

Linde IC-Engined Fork Truck H 35/40/45 D/T H 35/40/45 D-02 H 35/40/45 D-03/T-03

H 35/40/45 D-04/T-04 Series 352

This training material is only provided for your use and remains the exclusive property of **LINDE AG** Werksgruppe Flurförderzeuge und Hydraulik

02.01

CONTENTS

3	IC-Engined fork truck H 35/40/45 D/T, type 352	A1
3.1	Engine	Α1
3.1.1	Engine specifications (Diesel)	A1
3.1.2	Explanation of the engine number	A3
3.1.3	Renewing and tightening the V-belt	A4
3.1.4	Adjusting the valve clearance	A5
3.1.4.1	Valve clearance adjustment schematic	A
3.1.5	Cylinder head	A7
3.1.5.1	Removing the cylinder head	A7
3.1.5.2	Installing the cylinder head	A8
3.1.6	Engine timing and tightening torques	A10
3.1.7	Injection nozzles	A11
3.1.7.1	Removing and installing the injection nozzles, parts list AA 80247/AG 80757	A11
3.1.7.2	Removing and installing the injection nozzles, parts list AP 80975	A12
3.1.7.3	Repairing the injection nozzles	A13
3.1.8	Fuel injection pump	A16
3.1.8.1	Removing and installing the fuel injection pump, version with begin of delivery mark	
	on pump flange	A17
3.1.8.2	Removing and installing the fuel injection pump, version with adjusting pin (pin timing)	A19
3.1.9	Fuel injection pump	A24
3.1.10	Special tools	A25
3.2	Hydrostatic transmission	2
3.2.1	Schematic diagram of the drive unit	3
3.2.2	Travel drive specifications	4
3.2.3	Hydraulic circuit schematic	6
3.2.3.1	Hydraulic circuit schematic Type 352 -03	9a
3.2.4	Description of the hydrostatic travel drive	10
3.2.5	Flushing of the variable displacement pump and drive axle	12
3.2.6	Power limiter and anti stall device	12
3.2.7	Engine lock-out logic - reversing lock	12
3.2.8	Oil reservoir	14
3.2.9	Hydraulic remote control unit, HPV 130	14
3.2.10	Hydraulic remote control unit, HPV 135 -02	15a
3.2.10.1	Valve adjustment on HPV 135 -02	150

Service Training

3.3	Working hydraulic system	16
3.3.1	Circuit diagram of working hydraulic system	16
3.3.2	Description of the working hydraulic system	17
3.4	Wiring diagram	18
3.4.1	Wiring diagram for Diesel model	18
3.4.2	Wiring diagram for diesel model type 352 -03, standard equipment	19a
3.4.3	Wiring diagram for diesel model type 352 -03, options	19c
3.5	Checks and adjustments	20
3.5.1	Travel pedals	20
3.5.2	Brake pedal	20
3.5.3	Bowden cable for parking brake	22
3.5.4	Average wheel speed	23
3.5.5	Speed control for Diesel model	24
3.5.6	Start of drive wheel rotation	26
3.5.7	Brake shaft at travel control unit	27
3.5.8	Symmetry of the travel control	28
3.5.8.1	Drive wheel start of rotation	28
3.5.8.2	Engine speed increase	29
3.5.9	Pressure difference Δp	30
3.5.10	Reversing lock	31
3.5.11	Hydraulic neutral position	32
3.5.12	Sealing the wheel shaft	33
3.6	Trouble shooting	38
3.6.1	Line layout for trouble shooting	38
3.6.2	Aids and tools for measurements	40
3.6.3	Remarks to trouble shooting	42
3.6.4	Engine hydraulic speed control	43
3.6.4.1	Functional test	43
3.6.4.2	Trouble shooting	43
3.6.5	Hydraulic brake system	48
3.6.5.1	Functional test	48
3.6.5.2	Trouble shooting	48
3.6.6	Power assissted steering	51
3.6.6.1	Trouble shooting without measuring boost and maximum pressure	51

3.6.6.2	Trouble shooting with measurement of boost and maximum pressure	51
3.6.7	Equal pressure and start of control	53
3.6.8	Hydrostatic travel drive	57
3.7	LPG model of IC-Engined fork truck H 35/40/45, type 352	67
3.7.1	Engine Perkins G4.236	67
3.7.1.1	Engine	67
3.7.1.1.1	Engine specifications	67
3.7.1.1.2	Explanation of the engine number	68
3.7.1.1.3	Renewing and tightening the V-belt	69
3.7.1.1.4	Checking and adjusting valve clearances	70
3.7.1.1.5	Cylinder head	71
	Removing the cylinder head	71
3.7.1.1.5.2	Installing the cylinder head	72
3.7.1.1.6	Electronic ignition	73
3.7.1.1.6.1	Description	73
3.7.1.1.6.2	Circuit diagram	73
3.7.1.1.6.3	Lucas distributor model 65 DM 4	74
3.7.1.1.6.3	.1 Distributor assembly	75
3.7.1.1.6.3	.2 Removing and installing the distributor	76
3.7.1.1.6.4	Checking and adjusting ignition timing	77
3.7.1.1.6.5	Changing the spark plugs	78
3.7.1.1.6.6	Checking the ignition system	79
3.7.1.1.6.6	.1 Ignition Distributor with amplifier module	80
3.7.1.2	LPG installation	84
3.7.1.2.1	Schematic	84
3.7.1.2.2	Modes	85
3.7.1.2.3	Operation of vaporiser	87
3.7.1.2.4	Operation of mixer	90
3.7.1.2.5	Function of vacuum-controlled shutoff valve	92
3.7.1.3	Electronic speed control	93
3.7.1.3.1	Circuit diagram for LPG model	96
3.7.1.4	Checks and adjustments	99
3.7.1.4.1	Desired value sender	99
3.7.1.4.2	Engine speed sensor	100
3.7.1.4.3	LPG mixer	101
3.7.1.5	Trouble shooting	103

02.01

Service Training

3.7.1.5.1	Circuit diagram for engine speed control	104
3.7.1.5.2	Electronic control device	106
3.7.2	Engine Perkins 1004-40 S	108
3.7.2.1	Engine	108
3.7.2.1.1	Engine specifications	108
3.7.2.1.2	Explanation of the engine number	109
3.7.2.1.3	Renewing and tightening the V-belt	110
3.7.2.1.4	Adjusting the valve clearance	111
3.7.2.1.4.1	Valve clearance adjustment schematic	112
3.7.2.1.5	Cylinder head	113
3.7.2.1.5.1	Removing the cylinder head	113
3.7.2.1.5.2	Installing the cylinder head	114
3.7.2.1.6	Electronic ignition	116
3.7.2.2	Electrical system	122
3.7.2.2.1	Main circuit diagram series 352 -03/-04	122
3.7.2.2.2	Circuit diagram for options	125
3.7.2.2.3	Layout of electrical installation	131
3.7.2.3	LPG system	132
3.7.2.3.1	Without computer-controlled catalytic converter	132
3.7.2.3.2	With computer-controlled catalytic converter	133
3.7.2.3.3	Mixer	134
3.7.2.4	Electronic speed control	136
3.7.2.5	Trouble shooting	140
3.7.2.5.1	Circuit diagram for engine speed control	140
3.7.2.5.2	Electronic control device	142
3.7.2.5.3	Trouble shooting the transistorised ignition system	144
3.8	Drive axle AH 45-02 for model H 35/40/45 D-04/T-04	1
3.8.1	Drive axle AH 45 -02 with hub reduction gearbox, disc brake and hydraulic motor	2
3.8.2	Repairing the reduction gearbox	4
3.8.2.1	Reduction gearbox assembly (planetary hub reduction gearbox)	4
3.8.2.2	Renewing radial seal ring of planetary hub reduction gearbox	5
3.8.2.3	Removal and installation of multiple disc brake and hydraulic motor and swashplate	8

Service Training

Section

Page A 1

3 IC-ENGINED FORK TRUCK H 35/40/45 D/T, TYPE 352

3.1 ENGINE

3.1.1 ENGINE SPECIFICATIONS (DIESEL)

Engine type Perkins 1004.4, parts list AA 80427

Perkins 1004.4, parts list AG 80757 Perkins 1004.4, parts list AP 80975

10.98

Number of cylinders 4

Displacement 4000 cc

Power 50.5 kW at 2100 rpm

Injection pressure 250 bar
Start of injection 17.5° BTDC
Compression ratio 16.5 : 1
Compression pressure 31 bar

Compression wear limit: 26.0 bar

Maximum difference in pressure 3 bar

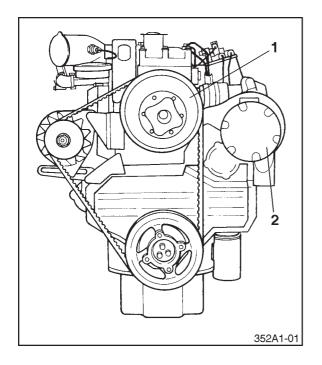
Lower idling speed 750^{+50} rpm Upper idling speed 2200^{+50} rpm Rated speed 2100 rpm

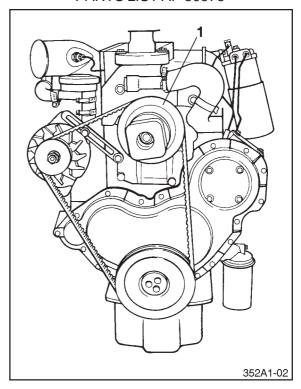
Valve clearance (cold) inlet $0.20 \pm 0.05 \text{ mm}$

exhaust 0.45 ± 0.05 mm

Firing order 1 - 3 - 4 - 2

Cylinder 1 on water pump side


Direction of rotation anti-clockwise (looking on flywheel)


Page A 2 10.98

Service Training

PERKINS 1004.4 PARTS LIST AA 80427

PERKINS 1004.4 PARTS LIST AG 80757 PARTS LIST AP 80975

- Fan pulley
- 2 Water pump

1 Pulley for fan and water pump

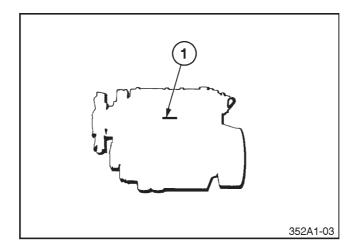
On engine parts list AA 80427 the water pump is bolted to the timing cover and driven via a gear by the fuel injection pump drive gear. The engine was installed up to 9/94.

On engine parts list AG 80757 the water pump is driven via a V-belt. The engine has been installed since 10/94.

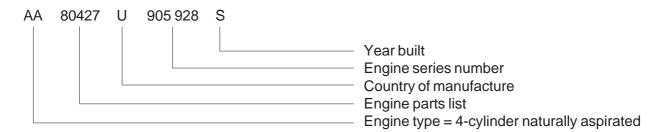
On engine parts list AP 80975 the fuel injection pump and the injection nozzles were changed.

In the following descriptions mention is made of the differences between the various versions.

Service Training


Section

04.96

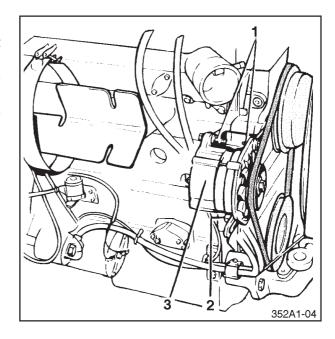

Page A 3

3.1.2 EXPLANATION OF THE ENGINE NUMBER

The engine number is stamped on a plate mounted on the cylinder block on the fuel injection pump side (1).

A typical engine number is

If you need repair parts, service or information for your engine, please state the complete engine number.

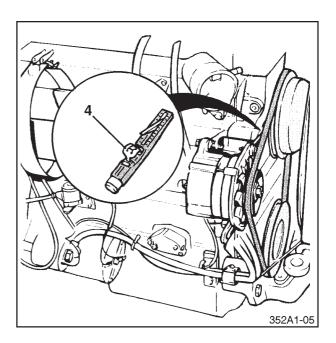

Page **A 4** 04.96

Service Training

3.1.3 RENEWING AND TIGHTENING THE V-BELT

RENEWING THE V-BELT

- Slacken both hex nuts (1).
- Slacken the fastening screw (2) on the adjustment link.
- Pivot the alternator (3) towards engine and remove the V-belt.
- Check the pulleys for wear, renewing them if necessarv.
- Install a new V-belt.

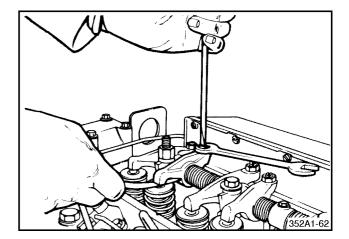

TENSIONING THE V-BELT

When checking belt tension, the use of a belt tension gauge (4), Part No. 000 941 94 35 is recommended.

- Pivot the alternator (3) away from the engine until the specified tension is obtained.
- Tighten the hex nuts (3) and fastening screw (2). Specified tension: 250 350 N

NOTE:

If a gauge is not available, check by pressing down the belt with the thumb and check the deflection. The belt deflection between alternator and fan pulley should be approx. 10 mm.


Service Training

Section 02.01 Page

Page A 5

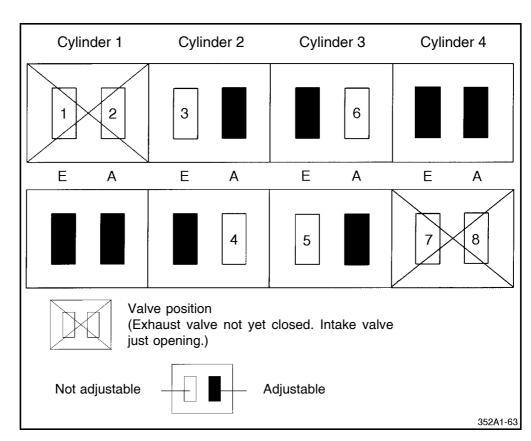
3.1.4 ADJUSTING THE VALVE CLEARANCE

The valve clearance is measured between the valve stem end and rocker arm. On a cool engine the valve clearance is 0.20 mm at the inlet valves and 0.45 mm at the exhaust valves.

Section

Page **A 6** 02.01

3.1


Service Training

3.1.4.1 VALVE CLEARANCE ADJUSTMENT SCHEMATIC

Crankshaft position I

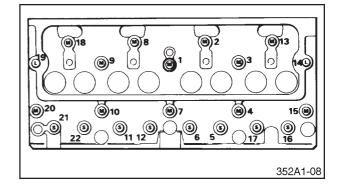
Crankshaft position II (rotate the crankshaft through 360°)

E = Inlet valve A = Exhaust valve

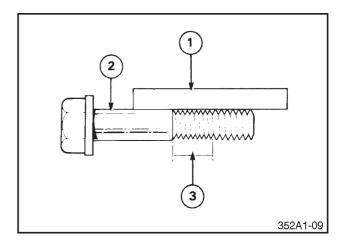
The position of the inlet and exhaust valves are shown in the illustration.

CAUTION: The first cylinder is located on the water pump side.

Section


tion **3.1**

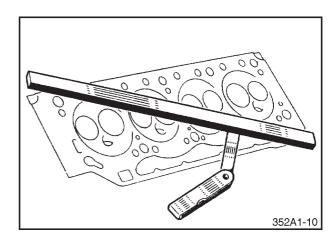
04.96 Page A 7


3.1.5 CYLINDER HEAD

3.1.5.1 REMOVING THE CYLINDER HEAD

 Unscrew the cylinder head bolts uniformly and in stages in the reverse order of the sequence given in the schematic.

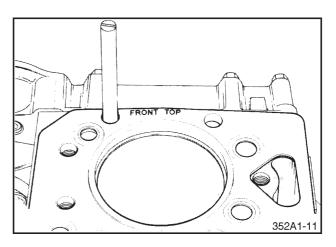
- Check the cylinder head bolts for deformation of the shank (2) with a ruler (1).
- Check the bolts for a visible reduction of the thread gauge in the vicinity of the bolt shank (3).
- Replace deformed or elongated bolts if the inspection of the cylinder head bolt shows that they are not in order

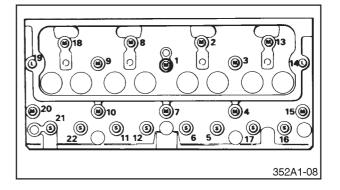


Page **A 8** 04.96

Service Training

3.1.5.2 INSTALLING THE CYLINDER HEAD

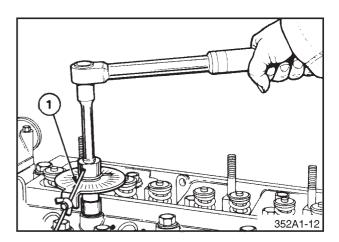

- Clean the cylinder head and engine block mating surfaces. There should be no remnants of the gasket on the mating surfaces.
- Check the cylinder head for deformation with a steel ruler and a set of gauges.
 - Maximum longitudinal deformation 0.15 mm Maximum transverse deformation 0.08 mm


- Fit a new cylinder head gasket without additional sealants.

NOTE:

Clean the tapped holes in the engine block before assembly of the cylinder head.

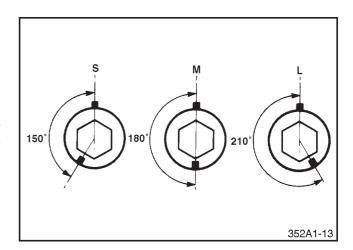
- Oil the cylinder head tapholes install bolts and torque to 110 Nm as shown in the schematic.
- Retighten the cylinder head bolts in the order given in the illustration and according to their length: Short bolts (S) are tightened a further 150°.
 Medium-sized bolts (M) are tightened a further 180°.
 Long bolts (L) are tightened a further 210°.


Service Training

Section

04.96

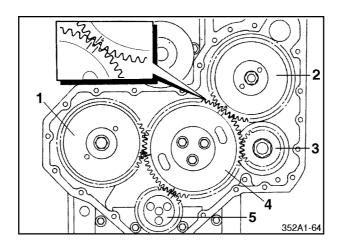
Page A 9


- If an angle gauge (1) is not available, mark the position of each bolt on the cylinder head at a corner.

- Mark the correct angle of each bolt on its side (clockwise) according to its length (S, M or L).
- Then tighten the bolts in the correct sequence until they are aligned with the marks on the cylinder head.

NOTE:

It is not necessary to tighten the cylinder head bolts when the engine is warm or after 50 service hours.



Page **A 10** 07.01

Service Training

3.1.6 ENGINE TIMING AND TIGHTENING TORQUES

CAUTION: On 4 cylinder trucks the setting mark "4" must be in line with the mark on the opposite side.

1	Camshaft	78 Nm
2	Fuel injection pump	80 Nm
3	Auxiliary power take-off (option)	130 Nm
4	Intermediate shaft	44 Nm
5	Crankshaft	115 Nm

Section

3.1

10.98

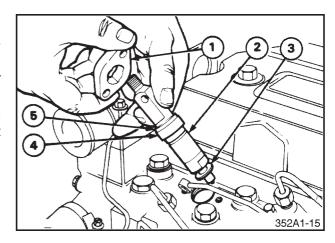
Page A 11

3.1.7 INJECTION NOZZLES

INJECTION NOZZLE MALFUNCTIONS

NOTE: Defective injection nozzles can cause the following malfunctions:

- Misfires
- Knocking in one or more cylinders
- Engine overheating
- Drop in performance
- Too much black smoke
- High fuel consumption
- Too much blue smoke during cold starts


Defective injection nozzles can be found by loosening the union nut of the high-pressure pipes one after the other while the engine is running at fast idle speed. When the union nut of the defective injection nozzle is loosened, it has little or no effect on the engine speed.

3.1.7.1 REMOVING AND INSTALLING THE INJECTION NOZZLES, PARTS LIST AA 80247/AG 80757

REMOVAL

- Disconnect the return oil line.
- Disconnect the high pressure lines.
- Unscrew the nozzle holder flange screws and remove the flange (1) .
- Take the nozzle holder (2) and gasket (3), spacer sleeve (5) and dust seal (4) out of the cylinder head.

ATTENTION: Always disconnect the set of high pressure lines completely, do not change the shape of the bends.

INSTALLATION

ATTENTION: Always renew the gasket (3) and dust seal (4).

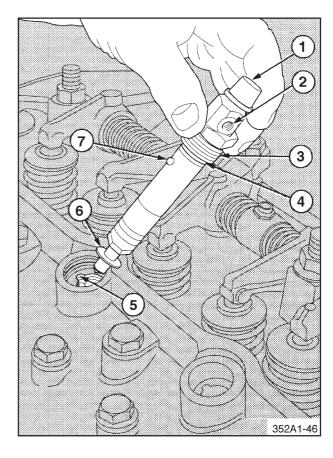
- Install the nozzle holder and sealing washer, dust seal and spacer sleeve in the cylinder head. Fit the flange and tighten the fastening screws to 12 Nm in stages.

ATTENTION: Do not cant the nozzle holder.

- Install the high pressure lines and torque union nuts to 18 Nm.
- Reconnect the return oil line. Always renew the return oil line seals.

Page A 12 10.98

Service Training


3.1.7.2 REMOVING AND INSTALLING THE INJECTION NOZZLES, PARTS LIST AP 80975

REMOVAL

CAUTION:

It is very important that no dirt gets into the fuel system. Before disconnecting connections, thoroughly clean the area around the connections. After the removal of a part, seal the open connection hole as appropriate.

- Disconnect the fuel leak-off pipe from the injection nozzle leak-off (2).
- Remove the union nuts of the injection pipe from the injection nozzle and from the fuel injection pump. Do not bend the pipe. If necessary, remove the pipe clamps. Install a plastic cap (1) to protect the pipe connection and nozzle.
- Unscrew the threaded ring (3) and remove the injection nozzle and seat washer from the bore in the cylinder head.

INSTALLATION

- Carefully clean the thread of the threaded ring (3) and the cylinder head.

CAUTION: Do not allow any thread sealing compound to get below the threaded ring.

- Make sure that the sealing ring (4) is in position. Apply a 2 mm wide bead of POWERPART injection nozzle sealing compound on the first two threads. The bead should go approximately 6 mm around each thread. Do not allow any sealing compound to get on the injection nozzle holders.

CAUTION:

Remove and discard the old seat washer (6). If the old seat washer remains in the bore for the injection nozzle, adding a new seat washer will result in the nozzles not being screwed in far enough.

- Place a new seat washer (6) into the bore in the cylinder head.
- Position the injection nozzle and make sure that the fitting ball (7) is seated correctly in the groove (5). Carefully screw in the threads of the threaded ring (3) into the threads of the cylinder head bore.

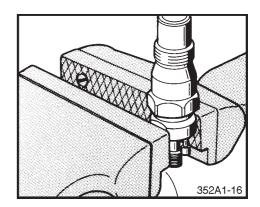
CAUTION: After tightening the nozzles, do not turn them again as this might destroy the sealing joint produced during tightening and result in a leak at the seat of the injection nozzle.

Section

3.1

10.98 Page A 13

- Tighten the nut gradually and uniformly to a torque of 30 Nm (3.0 kgf m). When tightening the nut, the injection nozzle will turn clockwise as the ball moves in the groove; this is acceptable. Remove any excessive thread sealing compound.


CAUTION:

Do not exceed the recommended torque for the union nuts on the injection pipes. In case a leak occurs at the union nut, ensure that the pipe is correctly aligned to the injection nozzle inlet. Do not tighten the injection nozzle union nut further as this could reduce the diameter at the end of the pipe, which in turn could reduce the fuel supply.

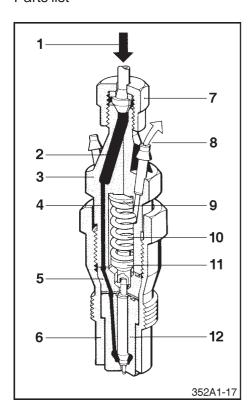
- Remove the plastic cap (1), install the injection pipe and torque the union nuts to 22 Nm (2.2 kgf m). If necessary, fit the pipe clamps.
- Renew the washers and fit the fuel leak-off pipe to the leak-off port (2). Torque the banjo fitting to 9.5 Nm (1.0 kgf m).
- Operate the engine and check for fuel and air leaks.

3.1.7.3 REPAIRING THE INJECTION NOZZLES

- Clamp the top part of the nozzle holder in a vice and unscrew it.
- To prevent the parts from falling apart, clamp the lower part of the injection nozzle and disassemble the injection nozzle.
- When disassembling the injection nozzle, take care that the individual parts are not interchanged. Torque for the top and lower part of the injection nozzle = 80 Nm

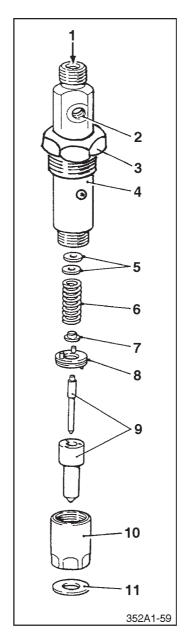
Full download/linde-forklift-series-352-service-training/

Section 3.1


Linde

Page **A 14** 10.98

Service Training


INJECTION NOZZLE

Parts list

- 1 Fuel inlet
- 2 Edge-type filter
- 3 Nozzle holder (atomiser)
- 4 Pressure passage
- 5 Shim
- 6 Nozzle tightening nut
- 7 Union nut for high-pressure pipe
- 8 Fuel leak-off
- 9 Pressure adjustment shims
- 10 Compression spring
- 11 Pressure spindle
- 12 Injection nozzle

Parts list

- 1 Fuel inlet
- 2 Fuel leak-off
- 3 Tightening nut
- 4 Nozzle holder (atomiser)
- 5 Pressure adjustment shims
- 6 Compression spring
- 7 Spring seat
- 8 Shim (adaptor)
- 9 Injection nozzle
- 10 Nozzle tightening nut
- 11 Seat washer