Eaton Fuller Hybrid Transmissions Troubleshooting Guide (Trts2000)

Full de province de la complete de l

Eaton® Hybrid Transmissions

Troubleshooting Guide

Visit the Roadranger web site at www.roadranger.com TRTS2000

July 2010

EH-8E406A-CDG EH-8E406A-CDR EH-8E406A-UPG EH-8E406A-UP EH-8E406A-CD EH-8E406A-T EH-6E607B-CD EH-6E607B-P

Warnings & Cautions

Warnings and Cautions

Throughout this service manual there are paragraphs that are marked with a title of DANGER, WARNING, or CAUTION. These special paragraphs contain specific safety information and must be read, understood, and heeded before continuing the procedure or performing the step(s).

DANGER INDICATES YOU WILL BE SEVERLY INJURED OR KILLED IF DO NOT FOLLOW THE INDICATED PROCEDURE.

WARNING INDICATES AN IMMEDIATE HAZARD, WHICH COULD RESULT IN SEVERE PERSONAL INJURY IF YOU DO NOT FOLLOW THE INDICATED PROCEDURE.

CAUTION INDICATES VEHICLE OR PROPERTY DAMAGE COULD OCCUR IF YOU DO NOT FOLLOW THE INDICATED PROCEDURE.

Note: NOTE INDICATES ADDITIONAL DETAIL THAT WILL AID IN THE DIAGNOSIS OR REPAIR OF A COMPONENT/SYSTEM.

Follow the specified procedures in the indicated order to avoid personal injury:

- 1. IF THE HIGH-VOLTAGE CONES ARE AROUND THE VEHICLE AND THE LOCKOUT IS INSTALLED ON THE PEC, THE ONLY PERSON THAT SHOULD BE ALLOWED TO START THE VEHICLE IS THE PERSON WHO SIGNED THE LOCKOUT TAG.
- 2. Before working on a vehicle or leaving the cab while the engine is running you should place the shift lever in "N" set the parking brake, and block the wheels.
- 3. For safety reasons, always engage the service brakes prior to selecting gear positions from "N."
- 4. Before starting a vehicle always be seated in the driver's seat, select "N" on the shift control, and set the parking brakes.
- 5. When parking the vehicle or leaving the cab you should place the shift lever in "N" and set the parking brake.
- 6. In vehicles with ePTO, the engine and/or Motor/Generator can start in ePTO mode. Never perform any maintenance or work on vehicle, while in this mode.
- 7. 12-volt Battery (+) and (-) must be disconnected prior to any welding on any Hybrid equipped vehicle.

Do not release the parking brake or attempt to select a gear until the air pressure is at the correct level.

To avoid damage to the transmission during towing place the shift lever in "N" and lift the drive wheels off the ground or disconnect the driveline.

High-Voltage Warnings & Cautions

- Use CO2 or Dry Chemical Fire Extinguishers.
- The high-voltage wiring is covered in orange insulation or convoluted tubing and marked with warning labels at the connectors.
- All Eaton® Hybrid Diesel/Electric vehicles will be marked 'Hybrid' on the outside of the vehicle, along with the shift label on the dash.
- Refer to OEM for specific location of chassis mounted hybrid components.
- Do NOT cut into the orange high-voltage cables.
- Do NOT cut into or open the PEC.
- Do NOT cut into or open the DC/DC converter.
- Do NOT cut into or open the Inverter.

A buffer zone must be set up and high-voltage insulated rubber gloves (class "O" with leather protectors) are required prior to working on high-voltage. Failure to follow these instructions may result in **severe personal injury or death.**

The rubber-insulated gloves that must be worn while working on the high-voltage system are class "O" with leather protectors. The rubber gloves should be tested before **EVERY** use following the rubber insulation gloves testing procedure found in the "Tool Specification" section. Failure to follow these instructions may result in **severe personal injury or death**.

Before inspecting or working on any high-voltage cables or components the "High-Voltage Service Shutdown Procedure" should be followed. Failure to follow these instructions may result in **severe personal injury or death**.

The Lockout and Tag-out devices should only be removed by the technician that placed the Lockout and Tagout devices on the vehicle. Failure to follow these instructions may result in **severe personal injury or death**.

High-voltage rubber insulated gloves (class "O" with leather protectors) must be worn when working on any high-voltage cables. The "High-Voltage Service Shutdown Procedure" must be followed prior to removing any high-voltage cables. Failure to follow these instructions may result in **severe personal injury or death**.

High-voltage cables and wiring are orange and contain a warning label at the connectors. High-voltage components are marked with a label. High-voltage rubber insulated gloves (class "O" with leather protectors) must be used when working on any of these components. Failure to follow these instructions may result in **severe personal injury or death.**

Table of Contents

Warnings & Cautionsi
Insulated Rubber Glove Test and High- Voltage Work Area1
High-Voltage Service Shutdown And Power-Up Procedure2
Diagnostic Tools/ Service Publications 4
Hybrid Diagnostic Procedure6
Hybrid Component & Connector Loca- tions
Fault Code Retrieval/Clearing11
Fault Code Isolation Procedure Index 12
Symptom-Driven Diagnostics Index 15
Product Diagnostic Mode (PDM) 16
Hybrid Lamp and Gear Display Descrip- tions
Power-Up Sequence Test
Electrical Pretest 20
Hybrid Electrical Pretest
Fault Code 1 Isolation Procedures 29
Fault Code 2 Isolation Procedures 34
Fault Code 3 Isolation Procedures 39
Fault Code 4 Isolation Procedures 47
Fault Code 5 Isolation Procedures 53
Fault Code 6 Isolation Procedures 60
Fault Code 7 Isolation Procedures 62
Fault Code 8 Isolation Procedures 64
Fault Code 9 Isolation Procedures 67

Fault Code 10 Isolation Procedures 70
Fault Code 11 Isolation Procedures 73
Fault Code 12 Isolation Procedures 75
Fault Code 14 Isolation Procedures 77
Fault Code 16 Isolation Procedures 81
Fault Code 17 Isolation Procedures 87
Fault Code 18 Isolation Procedures 92
Fault Code 19 Isolation Procedures 95
Fault Code 22 Isolation Procedures 99
Fault Code 24 Isolation Procedures . 102
Fault Code 26 Isolation Procedures . 106
Fault Code 27 Isolation Procedures . 109
Fault Code 32 Isolation Procedures . 112
Fault Code 33 Isolation Procedures . 115
Fault Code 34 Isolation Procedures . 118
Fault Code 35 Isolation Procedures . 121
Fault Code 36 Isolation Procedures . 126
Fault Code 37 Isolation Procedures . 128
Fault Code 38 Isolation Procedures . 133
Fault Code 39 Isolation Procedures . 139
Fault Code 40 Isolation Procedures . 144
Fault Code 48 Isolation Procedures . 150
Fault Code 49 Isolation Procedures . 153
Fault Code 50 Isolation Procedures . 155
Fault Code 51 Isolation Procedures . 157
Fault Code 52 Isolation Procedures . 161

Fault Code 53 Isolation Procedures . 166 Fault Code 54 Isolation Procedures . 169 Fault Code 56 Isolation Procedures . 175 Fault Code 58 Isolation Procedures . 179 Fault Code 59 Isolation Procedures . 184 Fault Code 60 Isolation Procedures . 189 Fault Code 61 Isolation Procedures . 193 Fault Code 63 Isolation Procedures . 197 Fault Code 64 Isolation Procedures . 201 Fault Code 65 Isolation Procedures . 204 Fault Code 66 Isolation Procedures . 208 Fault Code 67 Isolation Procedures . 211 Fault Code 68 Isolation Procedures . 216 Fault Code 70 Isolation Procedures . 220 Fault Code 71 Isolation Procedures . 222 Fault Code 72 Isolation Procedures . 226 Fault Code 73 Isolation Procedures . 230 Fault Code 74 Isolation Procedures . 234 Fault Code 75 Isolation Procedures . 236 Fault Code 76 Isolation Procedures . 238 Fault Code 78 Isolation Procedures . 242 Fault Code 82 Isolation Procedures 245 Fault Code 83 Isolation Procedures . 251 Fault Code 84 Isolation Procedures . 256 Fault Code 85 Isolation Procedures . 263 Fault Code 88 Isolation Procedures . 267 Fault Code 89 Isolation Procedures . 271 Fault Code 94 Isolation Procedures . 276

Fault Code 95 Isolation Procedures . 278 Fault Code 97 Isolation Procedures . 283 Fault Code 101 Isolation Procedures 289 Fault Code 103 Isolation Procedures 293 Fault Code 105 Isolation Procedures 298 Fault Code 107 Isolation Procedures 303 Fault Code 108 Isolation Procedures 317 Fault Code 110 Isolation Procedures 322 Fault Code 111 Isolation Procedures 325 Fault Code 112 Isolation Procedures 331 Fault Code 113 Isolation Procedures 338 Fault Code 114 Isolation Procedures 344 Fault Code 115 Isolation Procedures 349 Fault Code 116 Isolation Procedures 355 Fault Code 116 Isolation Procedures 362 Fault Code 117 Isolation Procedures 371 Fault Code 118 Isolation Procedures 376 Fault Code 120 Isolation Procedures 382 Fault Code 122 Isolation Procedures 386 Fault Code 123 Isolation Procedures 392 Fault Code 125 Isolation Procedures 395 Fault Code 126 Isolation Procedures 399 Fault Code 127 Isolation Procedures 402 Fault Code 128 Isolation Procedures 406 Fault Code 165 Isolation Procedures 411

Gear Engagement Test 427

ePTO Test 430

Wiring Diagrams 439

Connector Pin Description 443

Voltage Work Area

Insulated Rubber Glove Test

A WARNING

The rubber-insulated gloves that must be worn while working on the highvoltage system are class "O" with leather protectors. The rubber gloves should be tested before EVERY use following the rubber insulation gloves testing procedure found in the "Diagnostic Tools" section. Failure to follow these instructions may result in severe personal injury or death.

- The insulated rubber gloves that must be worn while working on the high-voltage system are class "O" rated. They must be inspected before each use and must always be worn in conjunction with the leather outer glove. Any hole in the insulated rubber glove is a potential entry point for high-voltage.
- Roll the glove up from the open end until the lower portion of the glove begins to balloon from the resulting air pressure. If the glove leaks any air it must not be used.
- The gloves should not be used if they exhibit any signs of wear and tear.
- The leather gloves must always be worn over the rubber insulating gloves in order to protect them.
- The rubber insulating gloves must be class "O" and meet all of the American Safety Testing Materials Standards.

High-Voltage Work Area Requirements

A buffer zone must be set up and high-voltage insulated rubber gloves (class "O" with leather protectors) are required prior to working on any high-voltage. Failure to follow these instructions may result in severe personal injury or death.

The buffer zone is required only when working on the high-voltage DC or AC systems and is called out both in the "High-Voltage Service Shutdown Procedure" and the individual repair procedures.

- Position the vehicle in the service bay.
- Position four orange cones around the corners of the vehicle to mark off a 1m (3 ft.) perimeter around the vehicle.
- Do not allow any unauthorized personnel into the buffer zone during repairs involving highvoltage. Only personnel trained for service on the high-voltage system are to be permitted in the buffer zone.

High-Voltage Service Shutdown And Power-Up Procedure

DANGER

HAZARDOUS VOLTAGE You will be severly injured or killed

if you do not follow the procedure.

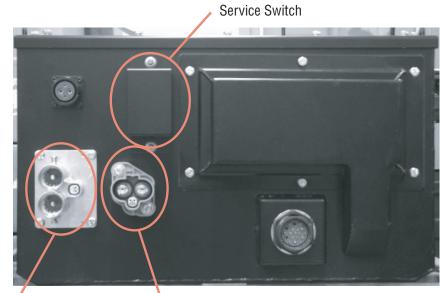
DANGER High Voltage should be

performed by qualified personnel only

mponents marked with

avoided. Service must be

A buffer zone must be set up and high-voltage insulated rubber gloves (class "O" with leather protectors) are required prior to working on high-voltage. Failure to follow these instructions may result in **severe personal injury or death.**


The rubber-insulated gloves that must be worn while working on the high-voltage system are class "O" with leather protectors. The rubber gloves should be tested before **EVERY** use following the rubber insulation gloves testing procedure found in the "Tool Specification" section. Failure to follow these instructions may result in **severe personal injury or death**.

Before inspecting or working on any high-voltage cables or components the "High-Voltage Service Shutdown Procedure" should be followed. Failure to follow these instructions may result in **severe personal injury or death.**

The Lockout and Tag-out devices should only be removed by the technician that placed the Lockout and Tag-out devices on the vehicle. Failure to follow these instructions may result in **severe personal injury or death.**

High-voltage rubber insulated gloves (class "O" with leather protectors) must be worn when working on any high- voltage cables. The "High-Voltage Service Shutdown Procedure" must be followed prior to removing any high-voltage cables. Failure to follow these instructions may result in **severe personal injury or death.**

High-voltage cables and wiring are orange and contain a warning label at the connectors. High-voltage components are marked with a label. High-voltage rubber insulated gloves (class "O" with leather protectors) must be used when working on any of these components. Failure to follow these instructions may result in **severe personal injury or death**.

DC High-Voltage Connector

DC High-Voltage Connector

High-Voltage Service Shutdown Procedures

- 1. Follow "High-voltage Work Area" procedure.
- 2. Locate the red PEC service switch on the front of the PEC and push to the Off position.
- 3. Remove the service switch cover and install the lockout bracket (J-48506).
- 4. Fasten tag to the lockout bracket.
- 5. Ensure the PEC service switch cannot move from the Off position.
- 6. Allow the system to set for a minimum of five (5) minutes to discharge high-voltage.
- 7. Connect ServiceRanger and view the Data Monitor PID 116 called "High-Voltage Battery Potential"
- 8. The voltage should be 30 volts or less. If the voltage is above 30 volts, do not work on the vehicle and contact Eaton® at 1-800-826-HELP (4357).
- 9. Turn ignition key off and proceed to repair or troubleshooting step.

Note: The voltage will drop to zero when the key is turned off.

High-Voltage Service Power-Up Procedure

- 1. Install all high-voltage connectors back into their locked positions.
- 2. Remove the lockout bracket and tag ONLY IF YOU ARE THE PERSON WHO IS WORKING ON THE VEHICLE.
- 3. Reinstall the protection bracket over the service switch.
- 4. Pull the service switch out and let vehicle set for two (2) minutes.
- 5. Start vehicle when appropriate.

Diagnostic Tools/ Service Publications

Eaton Tools

• Visit www.Roadranger.com

Tool	Description
ServiceRanger version 3	ServiceRanger PC based Diagnostic Tool

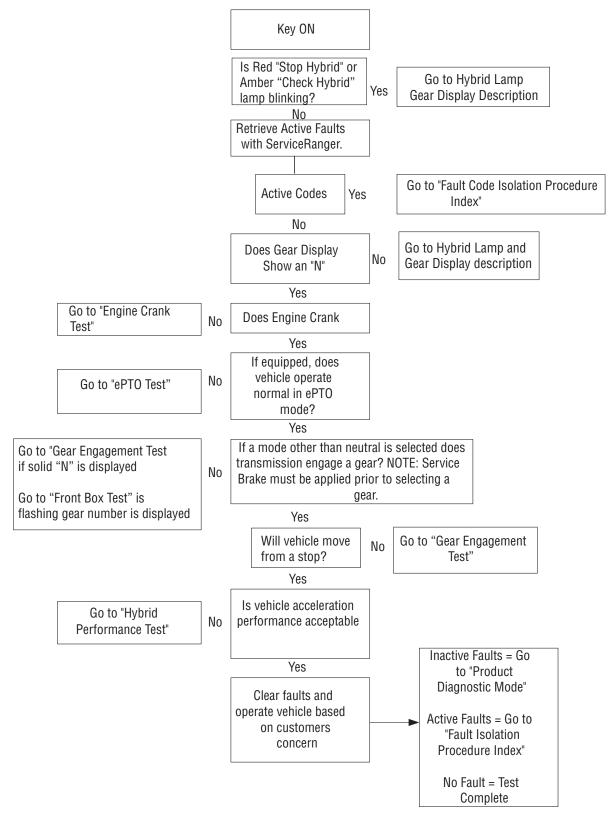
SPX/OTC Tools

• Contact SPX / OTC at (800) 328-6657

Tool	Description		
J-49818	Eaton Hybrid Tool Safety Kit - Basic PPE (Items listed below can be ordered separately)		
J-48603	High-Voltage Gloves w/leather protectors (1000 volt)		
J-48605	Hybrid Safety Cones (set of 4)		
J-48506	Lock-out Switch Plate		
J-48906	Lock-out Tags (per 25)		

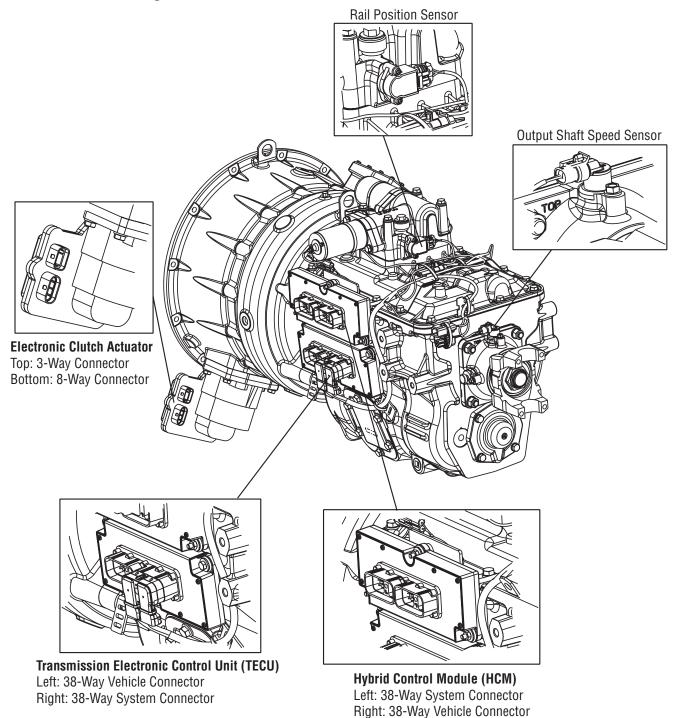
Tool	Description
J-49819	Eaton Hybrid Tool Safety Kit - Basic Plus PPE (Items listed below can be ordered separately)
J-48603	High-Voltage Gloves w/leather protectors (1000 volt)
J-48605	Hybrid Safety Cones (set of 4)
J-48506	Lock-out Switch Plate
J-48906	Lock-out Tags (per 25)
J-48907	Orange Magnetic Sign
J-48608	Hybrid Non-Conductive Safety Pole
J-48908	Glove Bag

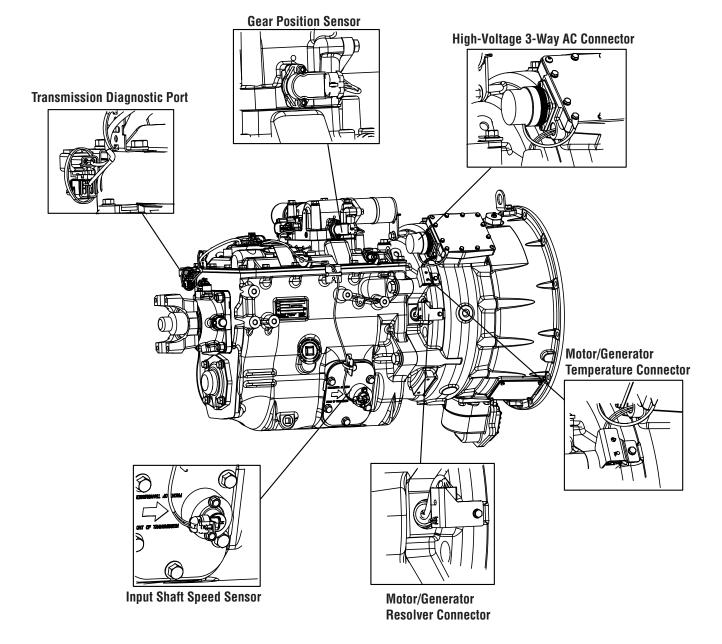
Tool	Description	
Misc. Service Tools	Items listed below are ordered separately	
J-48624	Nexiq USB-Link Communication Adapter	
J-43318-A*	Pin Adapter Kit - Interface Harness Diagnostics	
J-48735*	Alignment Pins - Hybrid Motor/Gen to Transmission Main Case	
J-49111*	Clutch Alignment Tool	
J-46708*	Fluke Digital Multimeter	
J-48505	Input Shaft Turning Socket	
J-48507	Lifting Fixture - Power Electronics Carrier	
J-48502	Jack Adapter Plate - Hybrid Drive Unit	
5019	Transmission Jack - Low Lift	
5078	Transmission Jack - High Lift	
J-48577	Engine/Transmission Stand Adapter Plate - Hybrid Drive Unit	
J-29109-A	Engine/Transmission Stand - 6000 lb. Rating	

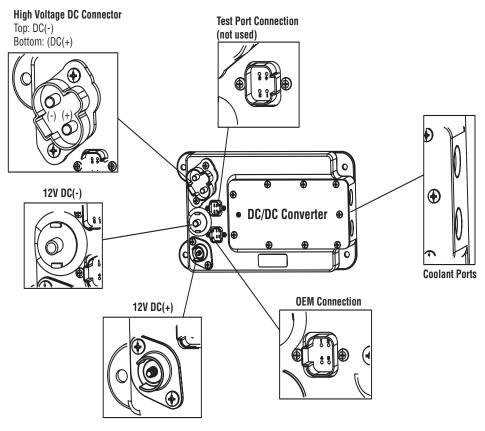

J-48893 - Hybrid PPE / Service Tool Kit (includes J-49819 kit and items from Miscellaneous Service Tools highlighted with *)

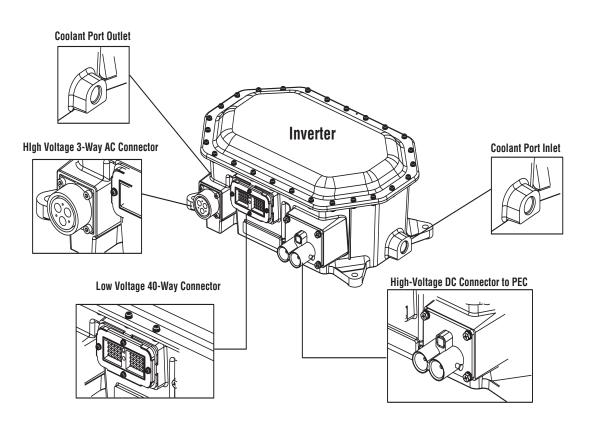
Service Publications

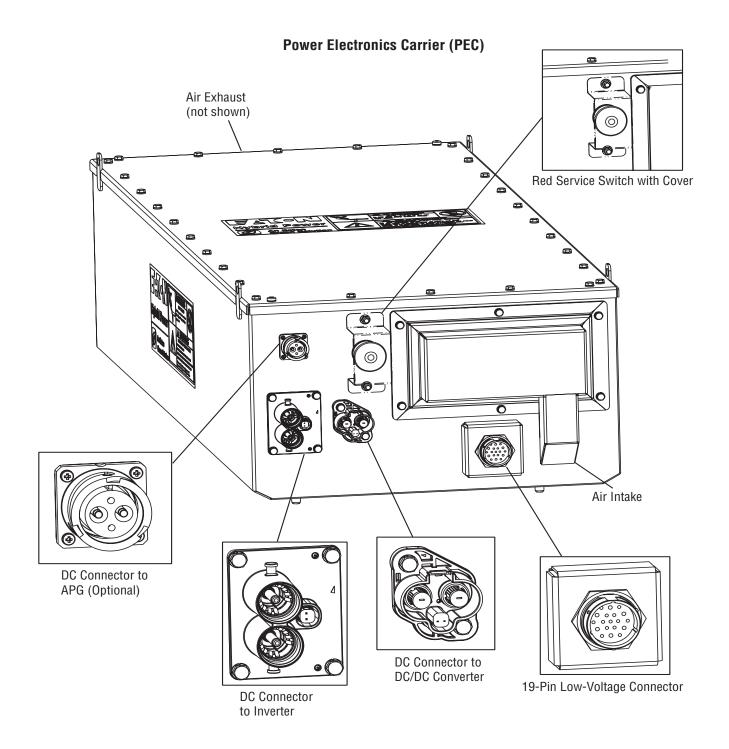
• Visit www.Roadranger.com


TRSM2000	Service Manual (covers external components on transmission and Hybrid components)	
TRSM0110	Service Manual (covers internal transmission repairs only)	
TRTS2000	Troubleshooting Guide	
TRDR1000	Drivers Instructions	
TRDR1110	First Responder Guide	


Hybrid Diagnostic Procedure


Hybrid Component & Connector Locations


Transmission Wiring Connections



Component Wiring Connections

Fault Code Retrieval/Clearing

All Eaton® Hybrid systems require the use of ServiceRanger for all diagnostics. To view fault codes or clear them follow the procedures below.

View Active and Inactive Faults

- 1. Connect ServiceRanger to the 9-pin diagnostic connector.
- 2. Go to the Tools menu and select the "Communication" tab.
- 3. Select the appropriate communication device for J-1587 and J-1939.
- 4. Select "Connect" on the main page.
- 5. Select the "View Fault Codes" tab.

Note: Initial use requires all steps, however subsequent uses require only steps 4 and 5.

Clear Inactive Faults

- 1. Connect ServiceRanger to the 9-pin diagnostic connector.
- 2. Go to the Tools menu and select the "Communication" tab.
- 3. Select the appropriate communication device for J-1587 and J-1939.
- 4. Select "Connect" on the main page.
- 5. Select the "View Fault Codes" tab.
- 6. Select the "Clear Faults" button.

Note: Initial use requires all steps, however subsequent uses require only steps 4 and 5.

Fault Code Isolation Procedure Index

Index

Fault Code	FMI	Description	Page Number
1	0,6,15	Motor/Generator Current Sensor	page 29
2	3	Motor/Generator Temperature Sensor	page 34
3	0	Motor/Generator Temperature	page 39
4	0,2, 21-27	Motor/Generator Rotation Speed Sensor	page 47
5	22-29	Motor/Generator AC Cable	page 53
6	13	No ECU Operation (HCM)	page 60
7	13	Improper ECU Configuration (HCM)	page 62
8	4	Loss of Switched Ignition Power Fault (HCM)	page 64
9	14	Weak Battery Voltage (HCM)	page 67
10	4	Low Battery Voltage (HCM)	page 70
11	12	No ECU Operation (TECU)	page 73
12	13	Improper ECU Configuration (TECU)	page 75
14	2, 3, 4	Invalid Shifter Range	page 77
16	2	High Integrity Link (HIL)	page 81
17	3, 4	Start Enable Relay	page 87
18	9, 2	ECA Communication	page 92
19	9, 2	CAN ECA Message	page 95
22	2, 9, 14	J-1939 ABS Message (HCM)	page 99
24	9	J-1939 HCM Message (TECU)	page 102
26	10	Clutch Slip	page 106
27	7, 14	Clutch Disengagement	page 109
32	2	Loss of Switched Ignition Power (TECU)	page 112
33	4	Low Battery Voltage (TECU)	page 115
34	14	Weak Battery Voltage (TECU)	page 118
35	2	J-1939 Communication Link	page 121
36	14	J-1939 Engine Message (TECU)	page 126
37	5	Power Supply (TECU)	page 128
38	3, 4, 5, 14	Battery Fan Relay	page 133
39	3, 4, 5	Heat Exchanger Relay	page 139
40	3, 4, 5, 14	Cooling Pump Relay	page 144
48	9, 2	J-1939 Transmission Message (HCM)	page 150
49	9, 2	J-1939 Engine Message (HCM)	page 153

Fault Code	FMI	Description	Page Number
50	9, 2	J-1939 Body Controller Message (HCM)	page 155
51	2, 3, 4, 10	Rail Position Sensor	page 157
52	2, 3, 4	Gear Position Sensor	page 161
53	12, 14	DC/DC Converter	page 166
54	2, 4	DC/DC Converter Output Voltage	page 169
56	2,3,4, 5,10	Input Shaft Speed Sensor	page 175
58	2, 3, 4, 5	Output Shaft Speed Sensor	page 179
59	9, 2	J-1939 Communication Link (HCM)	page 184
60	9, 2	CAN Communication Link (HCM)	page 189
61	5, 6	Rail Select Motor	page 193
63	5, 6	Gear Select Motor	page 197
64	0, 12, 13, 21-28	ECA	page 201
65	2, 5	ECA Speed Sensor	page 204
66	3, 4, 14	ECA Battery Voltage	page 208
67	3, 4, 5	ECA Ignition Voltage	page 211
68	12, 13, 14	Grade Sensor	page 216
70	0, 1, 2, 7	Engine Failed to Respond (HCM)	page 220
71	7	Failed to Disengage Gear	page 222
72	7	Failed to Select Rail	page 226
73	7	Failed to Engage Gear	page 230
74	7	Engine Failed to Respond (TECU)	page 234
75*	14	Power Down In Gear	page 236
76	3, 4, 16,18	High-Voltage Battery 1 Potential Voltage	page 238
78	6	High-Voltage Battery 1 Current	page 242
82	0,16	High-Voltage Battery 1 Temperature	page 245
83	12, 13	Invalid Shifter Range	page 251
84	13	Shift Control Device Not Configured	page 256
85	12	Shift Control Device Incompatible	page 263
88	9, 2	Inverter CAN Message (HCM)	page 267
89	9, 2	BCU CAN Message (HCM)	page 271
94	9	Transfer Case Message	page 276
95	3, 4	12-volt Cranking Relay	page 278
97	3, 4, 5, 7, 14	PTO Engagement	page 283
101	0, 22-31	High-Voltage Battery	page 289
103	22-26	Battery Control Unit Communication	page 293
105	22-30	Battery Control Unit	page 298

Eaton Fuller Hybrid Transmissions Troubleshooting Guide (Trts2000)

 Full download: http://manualplace.com/download/eaton-fuller-hybrid-transmissions-troubleshooting-guide-trts2000/

 Fault Code Isolation Procedure Index

 Index

Fault Code	FMI	Description	Page Number
107	1	High-Voltage Battery Leak Detection	page 303
108	3, 4	Battery Control Unit Power Supply	page 317
110	21-29	Inverter	page 322
111	12 - 28	Inverter Communication	page 325
112	3, 4	Inverter Voltage	page 331
113	6, 14	Inverter Current	page 338
114	3, 4	Inverter Power Supply	page 344
115	0	Inverter Temperature	page 349
116	3, 4, 5	High-Voltage Relays	page 355
116	10, 14, 20	High-Voltage Relays	page 362
117	3, 14, 29	BCU Relay Cut Request	page 372
118	3, 4, 5	Auxiliary High-Voltage Relay Control Circuit	page 419
120	3, 4	APG Unit 1 - AC Voltage	page 383
122	6, 14, 15	APG Unit 1 - Output	page 387
123	3, 4, 14	APG Unit 1 - High Voltage Battery	page 393
125	0	APG Unit 1 - Over Temperature	page 396
126	25, 26, 27	APG Unit - Configuration	page 400
127	0	APG Unit 1 - Ambient Air Over Temperature	page 403
128	3	APG Unit 1 - CAN	page 407
165	2	APG Unit 1 -Configuration Error	page 412