Full download: http://manualplace.com/download/dodge-dakota-2005-factory-service-manual/

GROUP TAB LOCATOR

	Introduction
0	Lubrication & Maintenance
2	Suspension
3	Differential & Driveline
5	Brakes
6	Clutch
7	Cooling
8A	Audio/Video
8B	Chime/Buzzer
8E	Electronic Control Modules
8F	Engine Systems
8G	Heated Systems
8H	Horn
81	Ignition Control
8 J	Instrument Cluster
8L	Lamps
8M	Message Systems
8N	Power Systems
80	Restraints
8P	Speed Control
9 0	Vehicle Theft Security
8R	Wipers/Washers
8T	Navigation/Telecommunication
8W	Wiring
9	Engine
11	Exhaust System
13	Frame & Bumpers
14	Fuel System
19	Steering
21	Transmission and Transfer Case
22	Tires/Wheels
23	Body
24	Heating & Air Conditioning
25	Emissions Control
	Component and System Index
	DTC Index
Serv	ice Manual Comment Forms (Rear of Manual)

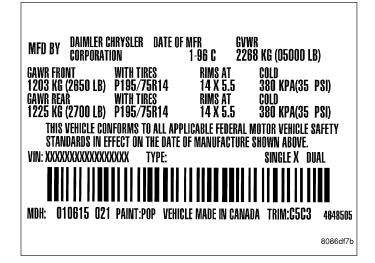
INTRODUCTION

TABLE OF CONTENTS

nane

page	pago
VEHICLE CERTIFICATION LABEL DESCRIPTION	
VEHICLE IDENTIFICATION NUMBER	
DESCRIPTION2	THREADED HOLE REPAIR
VEHICLE EMISSION CONTROL INFORMATION	
(VECI) LABEL	DESCRIPTION7
DESCRIPTION3	TORQUE REFERENCES
INTERNATIONAL SYMBOLS	DESCRIPTION9
DESCRIPTION3	
FASTENER IDENTIFICATION	
DESCRIPTION4	

VEHICLE CERTIFICATION LABEL


DESCRIPTION

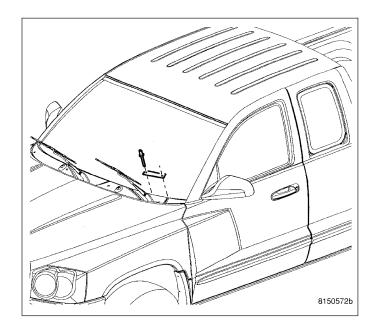
ND

A vehicle certification label is attached to every DaimlerChrysler Corporation vehicle. The label certifies that the vehicle conforms to all applicable Federal Motor Vehicle Standards. The label also lists:

- Month and year of vehicle manufacture.
- Gross Vehicle Weight Rating (GVWR). The gross front and rear axle weight ratings (GAWR's) are based on a minimum rim size and maximum cold tire inflation pressure.
- Vehicle Identification Number (VIN).
- Type of vehicle.
- Type of rear wheels.
- · Bar code.
- Month, Day and Hour (MDH) of final assembly.
- · Paint and Trim codes.
- · Country of origin.

The label is located on the driver-side door shut-face.

1


nage

VEHICLE IDENTIFICATION NUMBER

DESCRIPTION

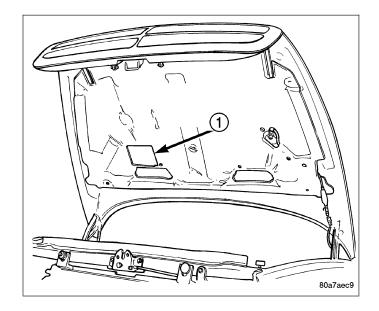
The Vehicle Identification Number (VIN) plate is attached to the top left side of the instrument panel. The VIN contains 17 characters that provide data concerning the vehicle. Refer to the decoding chart to determine the identification of a vehicle.

To protect the consumer from theft and possible fraud the manufacturer is required to include a Check Digit at the ninth position of the Vehicle Identification Number. The check digit is used by the manufacturer and government agencies to verify the authenticity of the vehicle and official documentation. The formula to use the check digit is not released to the general public.

VIN DECODING INFORMATION

POSITION	INTERPRETATION	CODE = DESCRIPTION
1	Country of Origin	1 = Manufactured by DaimlerChrysler Corporation
2	Make	D = Dodge
3	Vehicle Type	7 = Truck less Side Airbags 3 = Truck with Side Airbags
4	Gross Vehicle Weight Rating	H = 6001-7000 lbs.
5	Vehicle Line	E = Dakota 4x2 W = Dakota 4x4
6	Series	2 = Dakota ST 4 = Dakota SLT/Sport 5 = Dakota LARAMIE/SPORT
7	Body Style	2 = Club Cab Dakota 8 = Quad Cab Dakota
8	Engine	K = 3.7L 6 cyl. MPI Gasoline N = 4.7L 8 cyl. MPI Gasoline J = 4.7L 8 cyl. MPI High Output Gasoline
9	Check Digit	0 through 9 or X
10	Model Year	5 = 2005
11	Assembly Plant	S = Warren Truck Assembly
12 Thru 17	Vehicle Build S	equence

VEHICLE EMISSION CONTROL INFORMATION (VECI) LABEL


DESCRIPTION

All vehicles are equipped with a combined VECI label. This label is located in the engine compartment.

The VECI label contains the following:

- · Engine family and displacement
- Evaporative family
- Emission control system schematic
- · Certification application
- Engine timing specifications (if adjustable)
- Idle speeds (if adjustable)
- · Spark plug and gap

The label also contains an engine vacuum schematic. There are unique labels for vehicles built for sale in the state of California and the country of Canada. Canadian labels are written in both the English and French languages. These labels are permanently attached and cannot be removed without defacing information and destroying label.

INTERNATIONAL SYMBOLS

DESCRIPTION

≣ ○	# O	- \ -	♦	5	6
7	8	9	\$	11	12
13	14	15	- + 16	17	18
(!) 19	(P)	21	22	23	24

The graphic symbols illustrated in the following International Control and Display Symbols Chart are used to identify various instrument controls. The symbols correspond to the controls and displays that are located on the instrument panel.

FASTENER IDENTIFICATION

DESCRIPTION

The SAE bolt strength grades range from grade 2 to grade 8. The higher the grade number, the greater the bolt strength. Identification is determined by the line marks on the top of each bolt head. The actual bolt strength grade corresponds to the number of line marks plus 2. The most commonly used metric bolt strength classes are 9.8 and 10.9. The metric strength class identification number is imprinted on the head of the bolt. The higher the class number, the greater the bolt strength. Some metric nuts are imprinted with a single-digit strength class on the nut face. Refer to the Fastener Identification and Fastener Strength Charts.

Bolt Markings and Torques - Metric

Bolt Markings	kings 8.8/8.9 10.9			12.9					
Bolt Dia.	N⋅m	Ft. Lbs.	N⋅m	Ft. Lbs.	N⋅m	Ft. Lbs.			
6	12	105*	14	120*	16	12			
8	25	250*	32	23	38	28			
10	54	40	60	45	74	55			
12	95	70	108	80	135	100			
14	155	115	175	130	216	160			
16	243	180	324	210	324	240			
* Inch Lbs.									

Bolt Markings and Torques - U. S. Customary

Bolt Markings	Gra	de 5	Gra	ade 8
Bolt Dia.	N⋅m	Ft. Lbs	N⋅m	Ft. Lbs
1/4 - 20	10	95*	14	125*
1/4 - 28	10	95*	17	150*
5/16 - 18	22	200*	30	270*
5/16 - 24	26	240*	33	300*
3/8 - 16	40	30	55	40
3/8 - 24	47	35	60	45
7/16 - 14	68	50	88	65
7/16 - 20	74	55	95	70
1/2 - 13	101	75	135	100
1/2 -20	115	85	150	110
9/16 - 12	135	105	182	135
9/16 - 18	155	115	202	150
5/8 - 11	202	150	263	195
5/8 - 18	215	160	284	210
3/4 - 10	230	170	297	220
3/4 - 16	236	175	304	225
7/8 - 14	405	300	540	400
		* Inch Lbs.		•

	Mark	Class		Mark	Class
Hexagon nead bolt	Bolt 6- head No. 7- 8- 9- 10- 11-	- 5T - 6T - 7T - 8T - 9T - 10T	Stud bolt	No mark	4 T
	No mark	4 T	_		
Hexagon flange bolt w/washer nexagon bolt	No mark	4 T		Grooved	6 T
Hexagon nead bolt	Two protruding lines	5Т			
Hexagon Flange bolt w/washer nexagon bolt	Two protruding lines	61	Welded bolt		
Hexagon nead bolt	Three protruding lines	71	-		4 T
Hexagon nead bolt	Four protruding lines	87	-		

FASTENER USAGE

DESCRIPTION

FASTENER USAGE

WARNING: Use of an incorrect fastener may result in component damage or personal injury.

Fasteners and torque specifications references in this Service Manual are identified in metric and SAE format. During any maintenance or repair procedures, it is important to salvage all fasteners (nuts, bolts, etc.) for reassembly. If the fastener is not salvageable, a fastener of equivalent specification must be used.

THREADED HOLE REPAIR

Most stripped threaded holes can be repaired using a Helicoil®. Follow the vehicle or Helicoil® recommendations for application and repair procedures.

METRIC SYSTEM

DESCRIPTION

DES	CRIP	TIC	N																
	in-lbs to N•m N•m to in-lbs																		
in- Ib	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	N•m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb	N∙m	in-lb
2 4 6 8 10	.2260 .4519 .6779 .9039 1.1298	44 46 48 50	4.7453 4.9713 5.1972 5.4232 5.6492	82 84 86 88 90	9.2646 9.4906 9.7165 9.9425 10.1685	124 126 128 130	13.7839 14.0099 14.2359 14.4618 14.6878	164 166 168 170	18.3032 18.5292 18.7552 18.9811 19.2071	.2 .4 .6 .8 1	1.7702 3.5404 5.3107 7.0809 8.8511 10.6213	4.2 4.4 4.6 4.8 5 5.2	37.1747 38.9449 40.7152 42.4854 44.2556 46.0258	8.2 8.4 8.6 8.8 9	74.3494 76.1197 77.8899 79.6601	12.4 12.6 12.8 13	107.9837 109.7539 111.5242 113.2944 115.0646 116.8348	16.4 16.6 16.8 17	143.3882 145.1584 146.9287 148.6989 150.4691 152.2393
12 14 16 18 20 22 24	1.3558 1.5818 1.8077 2.0337 2.2597 2.4856 2.7116	54 56 58 60 62	5.8751 6.1011 6.3270 6.5530 6.7790 7.0049 7.2309	92 94 96 98 100 102 104	10.3944 10.6204 10.8464 11.0723 11.2983 11.5243 11.7502	134 136 138 140 142	14.9138 15.1397 15.3657 15.5917 15.8176 16.0436	174 176 178 180 182	19.4331 19.6590 19.8850 20.1110 20.3369 20.5629 20.7889	1.4 1.6 1.8 2 2.2 2.4	12.3916 14.1618 15.9320 17.7022 19.4725 21.2427	5.4 5.6 5.8 6 6.2 6.4	47.7961 49.5663 51.3365	9.4 9.6 9.8 10 10.2	83.2006 84.9708 86.7410 88.5112 90.2815 92.0517	13.4 13.6 13.8 14 14.2	118.6051 120.3753 122.1455 123.9157 125.6860 127.4562	17.4 17.6 17.8 18 18.5	154.0096 155.7798 157.5500 159.3202
26 28 30 32 34 36	2.9376 3.1635 3.3895 3.6155 3.8414 4.0674	66 68 70 72 74 76	7.4569 7.6828 7.9088 8.1348 8.3607 8.5867	106 108 110 112 114 116	11.9762 12.2022 12.4281 12.6541 12.8801 13.1060	146 148 150 152 154 156	16.2696 16.4955 16.7215 16.9475 17.1734 17.3994 17.6253	186 188 190 192 194 196	21.0148 21.2408 21.4668 21.6927 21.9187 22.1447	2.6 2.8 3 3.2 3.4 3.6 3.8	23.0129 24.7831 26.5534 28.3236 30.0938 31.8640 33.6342	6.6 6.8 7 7.2 7.4 7.6 7.8	58.4174 60.1876 61.9579 63.7281 65.4983 67.2685 69,0388	10.8 11 11.2 11.4 11.6	93.8219 95.5921 97.3624 99.1326 100.9028 102.6730 104.4433	14.8 15 15.2 15.4 15.6	129.2264 130.9966 132.7669 134.5371 136.3073 138.0775 139.8478	19.5 20 20.5 21 22 23	172.5970 177.0225 181.4480 185.8736 194.7247 203.5759 212.4270
38 40	4.2934 4.5193		8.8127 9.0386 ft-	1118 120 lbs	13.3320 13.5580 to N•m	160	17.8513 18.0773		22.3706 22.5966	4	35.4045	8	70.8090	12	106.2135 to ft-lk	16	141.6180		221.2781
ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb	N∙m	N∙m	ft-lb	N∙m		N∙m	ft-lb	N∙m	ft-lb	N∙m	ft-lb
9 10 11 12 13 14 15 16 17 18	1.3558 2.7116 4.0675 5.4233 6.7791 8.1349 9.4907 10.8465 12.2024 13.5582 14.9140 16.2698 17.6256 18.9815 20.3373 21.6931 23.0489 24.4047 25.7605 27.1164	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	28.4722 29.8280 31.1838 32.5396 33.8954 35.2513 36.6071 37.9629 39.3187 40.6745 42.0304 43.3862 44.7420 46.0978 47.4536 48.8094 50.1653 51.5211 52.8769 54.2327	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59 60	55.5885 56.9444 58.3002 59.6560 61.0118 62.36734 65.0793 66.4351 67.7909 69.1467 70.5025 71.8583 73.2142 74.5700 75.9258 77.2816 78.6374 79.9933 81.3491	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	82,7049 84,0607 85,4165 86,7723 88,1281 89,4840 90,8398 92,1956 93,5514 94,9073 96,2631 97,6189 98,9747 100,3316 101,6862 103,0422 104,3980 105,7538 107,1196 108,4654	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	109.8212 111.1770 112.5328 113.8888 115.2446 116.6004 117.9562 119.3120 120.6678 122.0236 123.3794 124.7352 126.0910 127.4468 128.8026 130.1586 131.5144 132.8702 134.2260 135.5820	1 2 3 4 5 6 7 8 9 10 11 12 .13 14 15 16 17 18 19 20	.7376 1.4751 2.2127 2.9502 3.6878 4.4254 5.1629 5.9005 6.6381 7.3756 8.1132 8.8507 9.5883 10.3259 11.0634 11.8010 12.5386 11.4.0137 14.7512	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	15,9888 16,2264 16,9639 17,7015 18,4391 19,1762 20,6517 21,3893 22,1269 22,8644 23,6020 24,3395 25,0771 25,8147 26,5522 27,2898 28,7649 29,5025	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 57 58 59 60	30.2400 30.9776 31.7152 32.4527 33.1903 33.9279 34.6654 35.4030 36.1405 36.8781 37.6157 38.3532 39.0908 40.5659 41.3035 42.0410 42.7786 43.5162 44.2537	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	44.9913 45.7289 46.4664 47.2040 47.9415 48.6791 49.4167 50.1542 50.8918 51.6293 52.3669 53.1045 53.8420 55.3172 56.0547 56.7923 57.5298 58.2674 59.0050	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	59,7425 60,4801 61,2177 61,9552 62,6928 63,4303 64,1679 64,9545 65,6430 66,3806 66,3806 66,3806 67,8557 68,5933 69,3308 70,0684 70,8060 71,5435 73,0187 73,7562
				in.	to mm									mm	to in.				
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17 .18	.254 .508 .762 1.016 1.270 1.524 1.778 2.032 2.286 2.540 2.794 3.302 3.556 3.810 4.064 3.318 4.572 4.826 5.080	.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 .31 .32 .33 .34 .35 .36 .37 .38	5.334 5.588 5.842 6.096 6.350 6.604 6.858 7.112 7.366 7.620 7.874 8.128 8.382 8.636 8.890 9.144 9.398 9.652 9.906 10.160	.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 .51 .52 .53 .54 .55 .56 .57 .58 .59 .60	10.414 10.668 10.922 11.176 11.430 11.684 11.938 12.192 12.446 12.700 12.954 13.208 13.462 13.716 13.970 14.224 14.478 14.732 14.986 15.240	.61 .62 .63 .64 .65 .66 .67 .70 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80	15.494 15.748 16.002 16.256 16.510 16.764 17.018 17.272 17.526 17.780 18.034 18.288 18.542 18.796 19.050 19.304 19.558 19.812 20.066 20.320	.81 .82 .83 .84 .85 .86 .87 .88 .89 .90 .91 .92 .93 .94 .95 .96 .97 .98 .99	20.574 20.828 21.082 21.336 21.590 21.844 22.098 22.352 22.606 23.114 23.368 23.622 23.876 24.130 24.384 24.638 24.638 24.892 25.146	.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17 .18	.00039 .00079 .00118 .00118 .00197 .00236 .00276 .00354 .00354 .00472 .00512 .00551 .00551 .00669 .00709 .00787	.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 .31 .32 .33 .34 .35 .36 .37 .38	.00827 .00866 .00906 .00945 .00984 .01024 .01102 .01142 .01181 .01220 .01299 .01378 .01417 .01457 .01496 .01575	.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 .51 .52 .53 .54 .55 .57 .58	.01614 .01659 .01732 .01772 .01811 .01850 .01929 .01969 .02008 .02008 .02008 .02008 .02165 .02205 .02244 .02283 .02363 .02362	.61 .62 .63 .64 .65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .76 .77 .78 .79	.02402 .02440 .02480 .02520 .02559 .02698 .02677 .02717 .0275 .02874 .02953 .02953 .02953 .02952 .03071 .03150	.81 .82 .83 .84 .85 .86 .87 .90 .91 .92 .93 .94 .95 .96 .97 .98 .99	.03189 .0328 .03268 .03268 .03307 .03346 .03425 .03465 .03504 .03543 .03583 .03622 .03661 .03701 .03740 .03780 .03819 .03858 .03898 .03937

J901N-10

The metric system is based on quantities of one, ten, one hundred, one thousand and one million.

The following chart will assist in converting metric units to equivalent English and SAE units, or vise versa.

CONVERSION FORMULAS AND EQUIVALENT VALUES

MULTIPLY	BY	TO GET	MULTIPLY	BY	TO GET
in-lbs	x 0.11298	= Newton Meters (N⋅m)	N-m	x 8.851	= in-lbs
ft-lbs	x 1.3558	= Newton Meters (N⋅m)	N⋅m	x 0.7376	= ft-lbs
Inches Hg (60° F)	x 3.377	= Kilopascals (kPa)	kPa	x 0.2961	= Inches Hg
psi	x 6.895	= Kilopascals (kPa)	kPa	x 0.145	= psi
Inches	x 25.4	= Millimeters (mm)	mm	x 0.03937	= Inches
Feet	x 0.3048	= Meters (M)	М	x 3.281	= Feet
Yards	x 0.9144	= Meters	М	x 1.0936	= Yards
mph	x 1.6093	= Kilometers/Hr. (Km/h)	Km/h	x 0.6214	= mph
Feet/Sec	x 0.3048	= Meters/Sec (M/S)	M/S	x 3.281	= Feet/Sec
mph	x 0.4470	= Meters/Sec (M/S)	M/S	x 2.237	= mph
Kilometers/Hr. (Km/h)	x 0.27778	= Meters/Sec (M/S)	M/S	x 3.600	Kilometers/Hr. (Km/h)

COMMON METRIC EQUIVALENTS

1 inch = 25 Millimeters	1 Cubic Inch = 16 Cubic Centimeters
1 Foot = 0.3 Meter	1 Cubic Foot = 0.03 Cubic Meter
1 Yard = 0.9 Meter	1 Cubic Yard = 0.8 Cubic Meter
1 Mile = 1.6 Kilometers	

Refer to the Metric Conversion Chart to convert torque values listed in metric Newton- meters (N·m). Also, use the chart to convert between millimeters (mm) and inches (in.).

9

TORQUE REFERENCES

DESCRIPTION

ND -

Individual Torque Charts appear within many or the Groups. Refer to the Standard Torque Specifications Chart for torque references not listed in the individual torque charts.

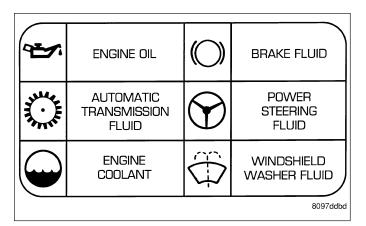
SPECIFIED TORQUE FOR STANDARD BOLTS

	l					ed torque		
Class	Diameter	Pitch	- CANADA	Hexagon head l			exagon flange	
	mm	mm	N∙m	kgf-cm	ft-lbf	N∙m	kgf-cm	ft-lbf
	6	1	5	55	48 inlbf	6	60	52 inlbf
	8	1.25	12.5	130	9	14	145	10
4 T	10	1.25	26	260	19	29	290	21
	12	1.25	47	480	35	53	540	39
	14	1.5	74	<i>7</i> 60	55	84	8 <i>5</i> 0	61
	16	1.5	115	1,150	83			_
	6	1	6.5	65	56 inlbf	7.5	<i>7</i> 5	65 inlbf
	8	1.25	15.5	160	12	17.5	1 <i>7</i> 5	13
5 T	10	1.25	32	330	24	36	360	26
	12	1.25	59	600	43	65	<i>67</i> 0	48
	14	1.5	91	930	67	100	1,0 <i>5</i> 0	<i>7</i> 6
	16	1.5	140	1,400	101		-	
	6	1	8	80	69 inlbf	9	90	78 inlbf
	8	1.25	19	195	14	21	210	1 <i>5</i>
6T	10	1.25	39	400	29	44	440	32
	12	1.25	71	<i>7</i> 30	53	80	810	59
	14	1.5	110	1,100	80	125	1,250	90
	16	1.5	1 <i>7</i> 0	1,750	127	-	_	
	6	1	10.5	110	8	12	120	9
	8	1.25	25	260	19	28	290	21
<i>7</i> T	10	1.25	52	530	38	58	590	43
	12	1.25	95	<i>97</i> 0	<i>7</i> 0	105	1,050	76
	14	1.5	145	1,500	108	165	1,700	123
	16	1.5	230	2,300	166	-	_	_
	8	1.25	29	300	22	33	330	24
8T	10	1.25	61	620	45	68	690	50
	12	1.25	110	1,100	80	120	1,250	90
	8	1.25	34	340	25	37	380	27
9T	10	1.25	70	<i>7</i> 10	51	78	790	57
	12	1.25	125	1,300	94	140	1,450	105
-	8	1.25	38	390	28	42	430	31
10T	10	1.25	78	800	58	88	890	64
	12	1.25	140	1 <i>,45</i> 0	105	155	1,600	116
	8	1.25	42	430	31	47	480	35
11T	10	1.25	87	890	64	97	990	72
, , ,	12	1.25	155	1,600	116	175	1,800	130

page

LUBRICATION & MAINTENANCE

TABLE OF CONTENTS


page

1 3	1 0
INTERNATIONAL SYMBOLS DESCRIPTION	
PARTS & LUBRICANT RECOMMENDATION	
DESCRIPTION	FLUID FILL/CHECK LOCATIONS
	DESCRIPTION8
FLUID TYPES	
FLUID TYPES2	DESCRIPTION
	MAINTENANCE SCHEDULES
DESCRIPTION	
FUEL REQUIREMENTS	
ENGINE COOLANT4	
ENGINE OIL5	
TRANSFER CASE - NV2336	
TRANSFER CASE - NV2446	
AXLE6	TOWING RECOMMENDATIONS17
POWER STEERING FLUID7	FOUR WHEEL DRIVE TOWING
AUTOMATIC TRANSMISSION FLUID7	RECREATIONAL TOWING (BEHIND
MANUAL TRANSMISSION	MOTORHOME, ETC.) OF 4X4 VEHICLES 19
OPERATION - AUTOMATIC TRANSMISSION	,
FILIID 7	

INTERNATIONAL SYMBOLS

DESCRIPTION

DaimlerChrysler Corporation uses international symbols to identify engine compartment lubricant and fluid inspection and fill locations.

PARTS & LUBRICANT RECOMMENDATION

DESCRIPTION

LUBRICANT RECOMMENDATIONS

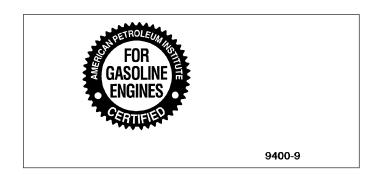
Chassis

Component	Fluid, Lubricant, or Genuine Part
Steering Gear & Linkage, Ball Joints, Prop Shafts & Yokes, Wheel Bearings	Mopar® Multi-Purpose Lubricant NLGI Grade 2 EP, GC-LB

Body

Component	Fluid, Lubricant, and Genuine Part
Hinges:	
Door & Hood	Mopar® Engine Oil
Swing Gate	Mopar® Multi-Purpose Lube NLGI Grade 2 EP, GC-LB
Latches: Door, Hood/Safety Catch, Swing Gate	Mopar® Multi-Purpose Lube NLGI Grade 2 EP, GC-LB
Seat Regulator & Track	Mopar® Multi-Purpose Lube NLGI Grade 2 EP, GC-LB
Lock Cylinders	Mopar® Lock Cylinder Lube

FLUID TYPES


When service is required, DaimlerChrysler Corporation recommends that only Mopar® brand parts, lubricants and chemicals be used. Mopar® provides the best engineered products for servicing DaimlerChrysler Corporation vehicles.

Only lubricants bearing designations defined by the following organization should be used to service a Chrysler Corporation vehicle.

- Society of Automotive Engineers (SAE)
- American Petroleum Institute (API)
- National Lubricating Grease Institute (NLGI)

API QUALITY CLASSIFICATION

This symbol on the front of an oil container means that the oil has been certified by the American Petroleum Institute (API) to meet all the lubrication requirements specified by DaimlerChrysler Corporation.

GEAR LUBRICANTS

SAE ratings also apply to multigrade gear lubricants. In addition, API classification defines the lubricants usage. Such as API GL-5 and SAE 75W-90.

FLUID TYPES

DESCRIPTION

FUEL REQUIREMENTS

Your engine is designed to meet all emissions regulations and provide excellent fuel economy and performance when using high quality unleaded "regular" gasoline having an octane rating of 87. The routine use of premium gasoline is not recommended. Under normal conditions the use of premium fuel will not provide a benefit over high quality regular gasolines and in some circumstances may result in poorer performance.

Light spark knock at low engine speeds is not harmful to your engine. However, continued heavy spark knock at high speeds can cause damage and immediate service is required. Engine damage resulting from operation with a heavy spark knock may not be covered by the new vehicle warranty.

Poor quality gasoline can cause problems such as hard starting, stalling and hesitations. If you experience these symptoms, try another brand of gasoline before considering service for the vehicle.

Over 40 auto manufacturers world-wide have issued and endorsed consistent gasoline specifications (the Worldwide Fuel Charter, WWFC) to define fuel properties necessary to deliver enhanced emissions, performance and durability for your vehicle. We recommend the use of gasolines that meet the WWFC specifications if they are available.

REFORMULATED GASOLINE

Many areas of the country require the use of cleaner burning gasoline referred to as "reformulated" gasoline. Reformulated gasoline contain oxygenates, and are specifically blended to reduce vehicle emissions and improve air quality.

We strongly support the use of reformulated gasoline. Properly blended reformulated gasoline will provide excellent performance and durability for the engine and fuel system components.

GASOLINE/OXYGENATE BLENDS

Some fuel suppliers blend unleaded gasoline with oxygenates such as 10% ethanol, MTBE, and ETBE. Oxygenates are required in some areas of the country during the winter months to reduce carbon monoxide emissions. Fuels blended with these oxygenates may be used in your vehicle.

CAUTION: DO NOT use gasoline containing METHANOL. Gasoline containing methanol may damage critical fuel system components.

MMT IN GASOLINE

MMT is a manganese-containing metallic additive that is blended into some gasoline to increase octane. Gasoline blended with MMT provide no performance advantage beyond gasoline of the same octane number without MMT. Gasoline blended with MMT reduce spark plug life and reduce emission system performance in some vehicles. We recommend that gasolines free of MMT be used in your vehicle. The MMT content of gasoline may not be indicated on the gasoline pump; therefore, you should ask your gasoline retailer whether or not his/her gasoline contains MMT.

It is even more important to look for gasoline without MMT in Canada because MMT can be used at levels higher than allowed in the United States. MMT is prohibited in Federal and California reformulated gasoline.

SULFUR IN GASOLINE

If you live in the northeast United States, your vehicle may have been designed to meet California low emission standards with Cleaner-Burning California reformulated gasoline with low sulfur. If such fuels are not available in states adopting California emission standards, your vehicles will operate satisfactorily on fuels meeting federal specifications, but emission control system performance may be adversely affected. Gasoline sold outside of California is permitted to have higher sulfur levels which may affect the performance of the vehicle's catalytic converter. This may cause the Malfunction Indicator Lamp (MIL), Check Engine or Service Engine Soon light to illuminate. We recommend that you try a different brand of unleaded gasoline having lower sulfur to determine if the problem is fuel related prior to returning your vehicle to an authorized dealer for service.

CAUTION: If the Malfunction Indicator Lamp (MIL), Check Engine or Service Engine Soon light is flashing, immediate service is required; see on-board diagnostics system section.

MATERIALS ADDED TO FUEL

All gasoline sold in the United States and Canada are required to contain effective detergent additives. Use of additional detergents or other additives is not needed under normal conditions.

FUEL SYSTEM CAUTIONS

CAUTION: Follow these guidelines to maintain your vehicle's performance:

- The use of leaded gas is prohibited by Federal law. Using leaded gasoline can impair engine performance, damage the emission control system, and could result in loss of warranty coverage.
- An out-of-tune engine, or certain fuel or ignition malfunctions, can cause the catalytic converter to overheat. If you notice a pungent burning odor or some light smoke, your engine may be out of tune or malfunctioning and may require immediate service. Contact your dealer for service assistance.
- When pulling a heavy load or driving a fully loaded vehicle when the humidity is low and the temperature is high, use a premium unleaded fuel to help prevent spark knock. If spark knock persists, lighten the load, or engine piston damage may result.
- The use of fuel additives which are now being sold as octane enhancers is not recommended. Most of these
 products contain high concentrations of methanol. Fuel system damage or vehicle performance problems
 resulting from the use of such fuels or additives is not the responsibility of DaimlerChrysler Corporation and
 may not be covered under the new vehicle warranty.

NOTE: Intentional tampering with emissions control systems can result in civil penalties being assessed against you.

ENGINE COOLANT

WARNING: ANTIFREEZE IS AN ETHYLENE GLYCOL BASE COOLANT AND IS HARMFUL IF SWALLOWED OR INHALED. IF SWALLOWED, DRINK TWO GLASSES OF WATER AND INDUCE VOMITING. IF INHALED, MOVE TO FRESH AIR AREA. SEEK MEDICAL ATTENTION IMMEDIATELY. DO NOT STORE IN OPEN OR UNMARKED CONTAINERS. WASH SKIN AND CLOTHING THOROUGHLY AFTER COMING IN CONTACT WITH ETHYLENE GLYCOL. KEEP OUT OF REACH OF CHILDREN. DISPOSE OF GLYCOL BASE COOLANT PROPERLY, CONTACT YOUR DEALER OR GOVERNMENT AGENCY FOR LOCATION OF COLLECTION CENTER IN YOUR AREA.

WARNING: DO NOT OPEN A COOLING SYSTEM WHEN THE ENGINE IS AT OPERATING TEMPERATURE OR HOT UNDER PRESSURE, PERSONAL INJURY CAN RESULT. AVOID RADIATOR COOLING FAN WHEN ENGINE COMPARTMENT RELATED SERVICE IS PERFORMED, PERSONAL INJURY CAN RESULT.

CAUTION: Use of Propylene Glycol based coolants is not recommended, as they provide less freeze protection and less corrosion protection.

The cooling system is designed around the coolant. The coolant must accept heat from engine metal, in the cylinder head area near the exhaust valves and engine block. Then coolant carries the heat to the radiator where the tube/ fin radiator can transfer the heat to the air.

The use of aluminum cylinder blocks, cylinder heads, and water pumps requires special corrosion protection. Mopar® Antifreeze/Coolant, 5 Year/100,000 Mile Formula (MS-9769), or the equivalent ethylene glycol base coolant with organic corrosion inhibitors (called HOAT, for Hybrid Organic Additive Technology) is recommended. This coolant offers the best engine cooling without corrosion when mixed with 50% Ethylene Glycol and 50% distilled water to obtain a freeze point of -37°C (-35°F). If it loses color or becomes contaminated, drain, flush, and replace with fresh properly mixed coolant solution.

CAUTION: Do not use coolant additives that are claimed to improve engine cooling.

CAUTION: Mopar® Antifreeze/Coolant, 5 Year/100,000 Mile Formula (MS-9769) may not be mixed with any other type of antifreeze. Mixing of coolants other than specified non-HOAT or other HOAT coolant, may result in engine damage that may not be covered under the new vehicle warranty, and decreased corrosion protection.

COOLANT PERFORMANCE

The required ethylene-glycol (antifreeze) and distilled water mixture depends upon climate and vehicle operating conditions. The coolant performance of various mixtures follows:

Pure Distilled Water - Distilled water can absorb more heat than a mixture of water and ethylene-glycol. This is for purpose of heat transfer only. Water also freezes at a higher temperature and allows corrosion.

100 percent Ethylene-Glycol - The corrosion inhibiting additives in ethylene-glycol need the presence of distilled water to dissolve. Without water, additives form deposits in system. These act as insulation causing temperature to rise to as high as 149°C (300°F). This temperature is hot enough to melt plastic and soften solder. The increased temperature can result in engine detonation. In addition, 100 percent ethylene-glycol freezes at -22°C (-8°F).

50/50 Ethylene-Glycol and Distilled Water - Is the recommended mixture, it provides protection against freezing to -37°C (-34°F). The antifreeze concentration **must always** be a minimum of 44 percent, year-round in all climates. If percentage is lower, engine parts may be eroded by cavitation. Maximum protection against freezing is provided with a 68 percent antifreeze concentration, which prevents freezing down to -67.7°C (-90°F). A higher percentage will freeze at a warmer temperature. Also, a higher percentage of antifreeze can cause the engine to overheat because specific heat of antifreeze is lower than that of water.

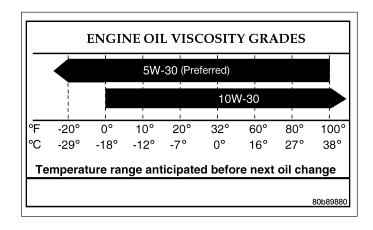
CAUTION: Richer antifreeze mixtures cannot be measured with normal field equipment and can cause problems associated with 100 percent ethylene-glycol.

ENGINE OIL

WARNING: NEW OR USED ENGINE OIL CAN BE IRRITATING TO THE SKIN. AVOID PROLONGED OR REPEATED SKIN CONTACT WITH ENGINE OIL. CONTAMINANTS IN USED ENGINE OIL, CAUSED BY INTERNAL COMBUSTION, CAN BE HAZARDOUS TO YOUR HEALTH. THOROUGHLY WASH EXPOSED SKIN WITH SOAP AND WATER. DO NOT WASH SKIN WITH GASOLINE, DIESEL FUEL, THINNER, OR SOLVENTS, HEALTH PROBLEMS CAN RESULT. DO NOT POLLUTE, DISPOSE OF USED ENGINE OIL PROPERLY. CONTACT YOUR DEALER OR GOVERNMENT AGENCY FOR LOCATION OF COLLECTION CENTER IN YOUR AREA.

When service is required, DaimlerChrysler Corporation recommends that only Mopar® brand parts, lubricants and chemicals be used. Mopar® provides the best engineered products for servicing DaimlerChrysler Corporation vehicles.

Only lubricants bearing designations defined by the following organization should be used.


- Society of Automotive Engineers (SAE)
- American Petroleum Institute (API)
- National Lubricating Grease Institute (NLGI)
- Association des Constructeurs Européens d' Automobiles (European Automobile Manufacturers Association) (ACEA)

API SERVICE GRADE CERTIFIED

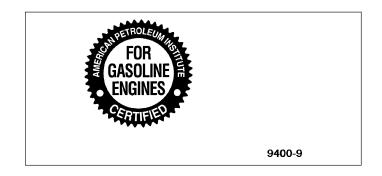
Use an engine oil that is API Certified. MOPAR® provides engine oils, that meet or exceed this requirement.

SAE VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. Use only engine oils with multiple viscosities such as 5W-30 or 10W-30. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range. Select an engine oil that is best suited to your particular temperature range and variation.

ACEA Categories

For countries that use the ACEA European Oil Categories for Service Fill Oils, use engine oils that meet the requirements of ACEA A1/B1, A2/B2, or A3/B3.


ENERGY CONSERVING OIL

An Energy Conserving type oil is recommended for gasoline engines. The designation of ENERGY CONSERVING is located on the label of an engine oil container.

CONTAINER IDENTIFICATION

Standard engine oil identification notations have been adopted to aid in the proper selection of engine oil. The identifying notations are located on the front label of engine oil plastic bottles and the top of engine oil cans.

This symbol means that the oil has been certified by the American Petroleum Institute (API). Diamler-Chrysler only recommend API Certified engine oils. Use Mopar® engine oil or equivalent.

TRANSFER CASE - NV233

Recommended lubricant for the NV233 transfer case is Mopar® ATF +4, Automatic Transmission Fluid.

TRANSFER CASE - NV244

Recommended lubricant for the NV244 transfer case is Mopar® ATF +4, Automatic Transmission Fluid.

AXLE

NOTE: DaimlerChrysler recommends Mopar® lubricants or lubricants of equal quality.

FRONT AXLE

C205F - Mopar® Gear Lubricant 75W-90

REAR AXLE

- 8 1/4 Mopar® Synthetic Gear Lubricant 75W-140
- 9 1/4 Mopar® Synthetic Gear Lubricant 75W-140

POWER STEERING FLUID

Mopar® ATF +4, Automatic Transmission Fluid is required in the power steering system. Substitute fluids can induce power steering system failure.

Mopar® ATF +4, Automatic Transmission Fluid when new is red in color. The ATF is dyed red so it can be identified from other fluids used in the vehicle such as engine oil or antifreeze. The red color is not permanent and is not an indicator of fluid condition. As the vehicle is driven, the ATF will begin to look darker in color and may eventually become brown. **This is normal.** ATF+4 also has a unique odor that may change with age. Consequently, odor and color cannot be used to indicate the fluid condition or the need for a fluid change.

AUTOMATIC TRANSMISSION FLUID

NOTE: Refer to Service Procedures in this group for fluid level checking procedures.

Mopar® ATF +4, Automatic Transmission Fluid is the recommended fluid for DaimlerChrysler automatic transmissions.

Dexron II fluid IS NOT recommended. Clutch chatter can result from the use of improper fluid.

Mopar® ATF +4, Automatic Transmission Fluid when new is red in color. The ATF is dyed red so it can be identified from other fluids used in the vehicle such as engine oil or antifreeze. The red color is not permanent and is not an indicator of fluid condition. As the vehicle is driven, the ATF will begin to look darker in color and may eventually become brown. **This is normal.** ATF+4 also has a unique odor that may change with age. Consequently, odor and color cannot be used to indicate the fluid condition or the need for a fluid change.

FLUID ADDITIVES

DaimlerChrysler strongly recommends against the addition of any fluids to the transmission, other than those automatic transmission fluids listed above. Exceptions to this policy are the use of special dyes to aid in detecting fluid leaks.

Various "special" additives and supplements exist that claim to improve shift feel and/or quality. These additives and others also claim to improve converter clutch operation and inhibit overheating, oxidation, varnish, and sludge. These claims have not been supported to the satisfaction of DaimlerChrysler and these additives **must not be used.** The use of transmission "sealers" should also be avoided, since they may adversely affect the integrity of transmission seals.

MANUAL TRANSMISSION

NOTE: DaimlerChrysler recommends Mopar® lubricants or lubricants of equal quality.

• G238 - Mopar® ATF+4

OPERATION - AUTOMATIC TRANSMISSION FLUID

The automatic transmission fluid is selected based upon several qualities. The fluid must provide a high level of protection for the internal components by providing a lubricating film between adjacent metal components. The fluid must also be thermally stable so that it can maintain a consistent viscosity through a large temperature range. If the viscosity stays constant through the temperature range of operation, transmission operation and shift feel will remain consistent. Transmission fluid must also be a good conductor of heat. The fluid must absorb heat from the internal transmission components and transfer that heat to the transmission case.

FLUID CAPACITIES

SPECIFICATIONS

FLUID CAPACITIES

Gallons (95 Liters)****
.7L (5.0 qts.)
.6L (6.0 qts.)
L (16.2 qts.)***
L (16.2 qts.)***
.8L (4.0 qts.)
3L (17.6 pts.)
- 5.2 L (11 pts.)
- 6.2 L (13 pts.)
33L (28.0 pts.)
2L (4.65 pts.)
18L (2.5 pts.)
35L (2.85 pts.)
.66L (56 oz.)
.07L (70 oz.)
.13L (72 oz.)
o vehicle due to manufacturino
t

FLUID FILL/CHECK LOCATIONS

cooler, these capacities may vary.

DESCRIPTION

The fluid check/fill points and lubrication locations are located in each applicable Sections.

Full dawnload: http://manualplace.com/download/dodge-dakota-2005-factory-service-manual/MAINTENANCE 0 - 9

MAINTENANCE SCHEDULES

DESCRIPTION

MAINTENANCE SCHEDULES

There are two maintenance schedules that show the required service for your vehicle.

First is Schedule "B". It is for vehicles that are operated under the conditions that are listed below and at the beginning of the schedule.

- Day or night temperatures are below 32° F (0° C).
- · Stop and go driving.
- Extensive engine idling.
- Driving in dusty conditions.
- Short trips of less than 10 miles (16 km).
- More than 50% of your driving is at sustained high speeds during hot weather, above 90° F (32° C).
- · Trailer towing.
- Taxi, police, or delivery service (commercial service).
- · Off-road or desert operation.
- If equipped for and operating with E-85 (ethanol) fuel.

NOTE: If ANY of these apply to you then change your engine oil every 3,000 miles (5 000 km) or 3 months, whichever comes first and follow schedule "B" of the "Maintenance Schedules" section of this manual.

NOTE: If ANY of these apply to you then change your coolant every 102,000 miles (163 000 km) or 60 months, whichever comes first and follow schedule "B" of the "Maintenance Schedules" section of this manual.

NOTE: Most vehicles are operated under the conditions listed for Schedule "B".

Second is Schedule "A". It is for vehicles that are not operated under any of the conditions listed under Schedule "B".

Use the schedule that best describes your driving conditions. Where time and mileage are listed, follow the interval that occurs first.

NOTE: Under no circumstances should oil change intervals exceed 6000 miles (10 000 km) or 6 months whichever comes first.

CAUTION: Failure to perform the required maintenance items may result in damage to the vehicle.

At Each Stop for Fuel

- Check the engine oil level about 5 minutes after a fully warmed engine is shut off. Checking the oil level while
 the vehicle is on level ground will improve the accuracy of the oil level reading. Add oil only when the level is
 at or below the ADD or MIN mark.
- Check the windshield washer solvent and add if required.

Once a Month

- · Check tire pressure and look for unusual wear or damage.
- Inspect the battery and clean and tighten the terminals as required.
- Check the fluid levels of coolant reservoir, brake master cylinder, and transmission and add as needed.
- Check all lights and all other electrical items for correct operation.