Full download: http://manualplace.com/download/caterpillar-applied-failure-analysis-priciples-of-lubrication-service-training/

Applied Failure Analysis

Service Training Meeting Guide 020

SESV8020 September 2000

CATERPILLAR

TECHNICAL PRESENTATION

APPLIED FAILURE ANALYSIS
PRINCIPLES OF LUBRICATION

LUBRICATION FAILURE ANALYSIS

MEETING GUIDE

SLIDES AND SCRIPT

AUDIENCE

Service, service support and administrative staff personnel who are or may be involved in investigating lubration related failures.

CONTENT

This presentation describes function, classification, structure, characteristics, common failure modes, and testing of lubricants.

OBJECTIVES

After learning the information in this presentation, the student will be able to:

- 1. identify the primary functions of lubricants used in Caterpillar products;
- 2. describe the key elements of, and differences between, (SAE) viscosity classifications and (API) service classifications;
- 3. identify key characteristics of lubricant base stock and describe the effect each has on lubricant performance;
- 4. identify key characteristics of viscosity, lubricity, degradation/contamination additive types, and describe the effect each has on lubricant performance;
- 5. identify common lubrication modes of failure (wrong ingredients, degradation, contamination);
- 6. describe common field tests of lubricants, how the tests are performed, and what information the tests reveal.

REFERENCES

Principles of Lubrication Applied Failure Analysis Reference Book SEBV0567

PREREQUISITES

AFA STMG 013 Failure Analysis Management	SERV8013
AFA STMG 017 Basic Metallurgy	SERV8017
AFA STMG 014 Principles of Fractures	SERV8014
AFA STMG 015 Principles of Wear	SERV8015

Estimated Time: 4 Hours

Visuals: 184 electronic images

Student Handouts: None

Form: SESV8020

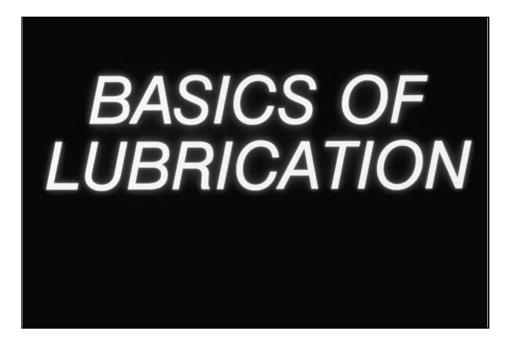
Date: 9/2000

© 2000 Caterpillar Inc.

TABLE OF CONTENTS

INTRODUCTION	5
LUBRICANT TYPES	14
LUBRICANT FUNCTIONS	24
LUBRICANT CLASSIFICATIONS	39
Viscosity	41
Service Classification	53
Other Classifications	56
LUBRICANT STRUCTURE	57
LUBRICANT CHARACTERISTICS	68
Base Stocks	69
Additives	90
SEMI-SOLID LUBRICANTS	121
LUBRICATION FAILURE MODES	130
Wrong Ingredients	131
Degradation	132
Contamination	
OTHER FACTORS	173
FIELD TESTS	178
CONCLUSION	185
SLIDE LIST	190

INSTRUCTOR NOTES


1

• Background information

INTRODUCTION

Good failure analysis often requires background information about products, especially about working environments and system conditions.

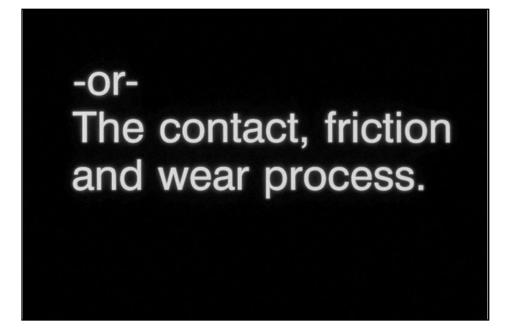
Many times it is an environment or system condition that is the root cause of the failure. Of all the systems which cause failures, the lubrication system is most frequently involved.

2

- · Basics of lubrication
- Function
- Structure
- Operation
- Lubrication failure mode
- Field tests

Other failure analysis presentations include some discussion about lubrication, but this presentation covers the basics of lubrication in more detail.

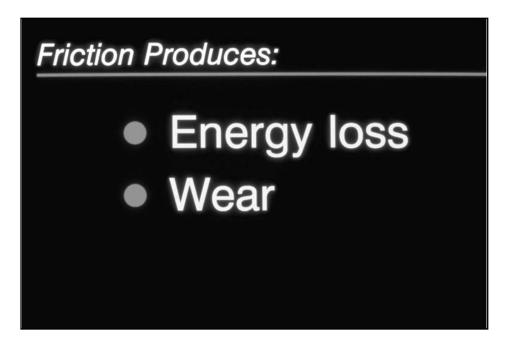
This presentation includes the functions of lubrication, oil classification systems, lubricant structure, characteristics, common lubrication failure modes, and field testing of lubricants.


Tribology

The science and technology of interacting surfaces in relative motion.

3

Tribology


Lubrication is only a part of a bigger picture called tribolgy, the science and technology of interacting surfaces in relative motion.

4

Contact, friction and wear

In simpler words, tribology is the contact, friction and wear process.

- Friction produces
 - Energy loss
 - Wear

Friction is usually undesirable because it produces energy loss and accelerates wear. However, friction is sometimes desirable in steering, braking, and transmission clutches.

Caterpillar Applied Failure Analysis Priciples Of Lubrication Service Training

Full download: http://manualplace.com/download/caterpillar-applied-failure-analysis-priciples-of-lubrication-service-training/

AFA STMG 020

- 10 -

AFA STMG 020 9/2000

Energy loss = Cost

Wear = Parts replacement and cost

Lubrication = Savings

6

• Friction = cost

Both energy loss and wear increase costs and hasten parts replacement.

• Lubrication = savings

Careful use of friction reducing lubricants can therefore return big savings to owners and operators.