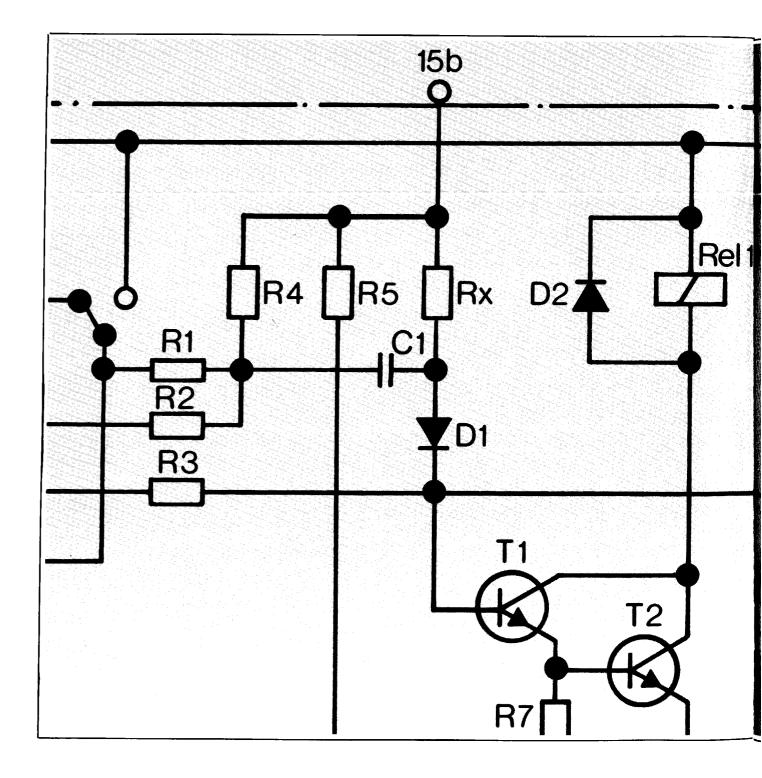
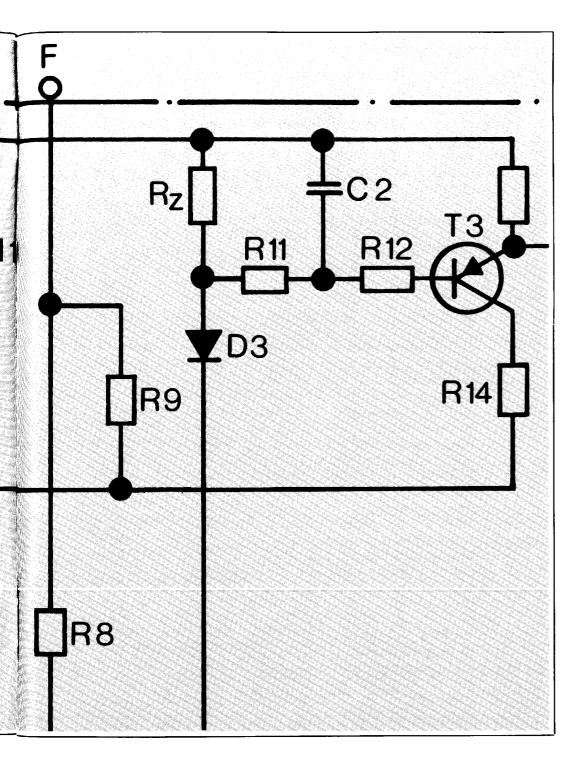
ull download: http://manualplace.com/download/1984-bmw-633csi-electrical-troubleshooting-manual/

1984 BMW 633CSi Electrical Troubleshooting Manual

BMW of North America, Inc. Montvale, New Jersey


FOREWORD


In the interests of continuing technical development work we reserve the right to modify designs and equipment.

Printed in USA

© Copyright BMW of North America, Inc. May 1984

Not to be reproduced wholly or in part without written permission of BMW of North America, Inc. PN 8989 1000 154

1984 BMW 633CSi Electrical Troubleshooting Manual

CONTENTS

Index	2
How To Use This Manual	3
Symbols	4
Wire Size Conversion Chart	5
Systematic Troubleshooting	6
Diagnostic Connector	101
Power Distribution Box	102
Fuse Data	103
Schematic Diagrams	104
Component Charts and	
Figures	201

Index—Alphabetical Listing of Electrical Circuits

SCHEMATIC PAGE

SCHEMATIC PAGE

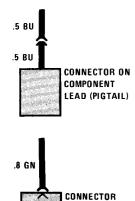
Accessory Connector	Lights (continued)
Active Check Control 123	
Air Conditioning 149	—Hazard Warning 130
Auxiliary Fan 148	—Headlights 128
Brake Lining Warning 126	—Interior 127
Central Locking 144	—License 133
Charging System 109	—Rear Marker 133
Cigar Lighter 139	—Stoplights 134
Cruise Control 134	—Tail 132
Diagnostic Connector	—Turn 130
Evaporative Control 111	—Transmission Range 136
Fuel Control 114	—Trunk 133
Fuel Delivery 111	—Underhood 132
Fuel Gauge 118	—Visor 136
Fuse Data 103	On-Board Computer 116
Gauges 118	Power Antenna 147
Ground Distribution	Power Distribution 104
Heater 149	Power Distribution Box
Heated Door Lock	Power Mirrors 146
Horn 140	Power Seats 158
Idle Speed Control 112	Power Windows 142
Ignition 113	Radio 147
Ignition Key Warning	Rear Defogger 141
Lights	Seatbelt Warning 115
—Backup 138	Service Interval Indicator 121
—Dash 136	Speedometer 118
—Fog 128	Start 110
—Front Park	Sunroof 152
—Glove Box	Warning Indicators 118
	Windshield Washer Jet Heaters 160
	Wiper/Washer 122

The purpose of this manual is to show electrical schematics in a manner that makes electrical troubleshooting easier. Electrical components which work together are shown together on one schematic. The Wiper-Washer schematic, for example, shows all of the electrical components in one diagram. At the top of the page is the fuse (positive) that powers the circuit. The flow of current is shown through all wires, connectors, switches, and motors to ground (negative) at the bottom of the page.

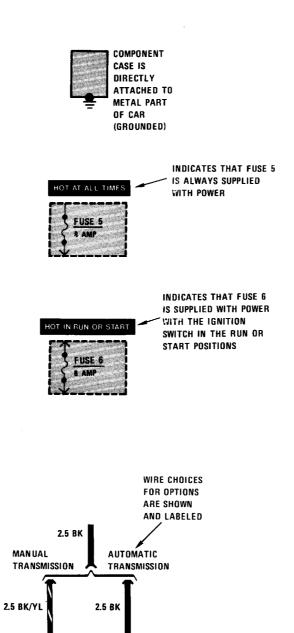
Within the schematic, all switches and sensors are shown "at rest," as though the Ignition Switch were off. For identification, component names are underlined and placed next to or above each component. Notes are included, describing how switches and other components work.

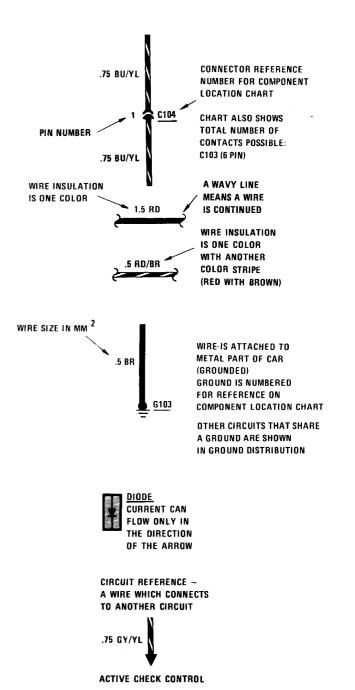
The power distribution schematic shows the current feed through all the connections from the Battery and Alternator to each fuse and the Ignition and Light Switches. If the Power Distribution schematic is combined with any other circuit schematic, a complete picture is made of how that circuit works. The Ground Distribution schematics show how several circuits are connected to common grounds.

All wiring between components is shown exactly as it exists in the vehicle; however, the wiring is not drawn to scale. To aid in understanding electrical operation, wiring inside complicated components has been simplified. The "Solid State" label designates electronic components.


WIRE SIZE CONVERSION CHART			
METRIC (CROSSECTIONAL AREA IN MM²)	AWG (AMERICAN WIRE GAUGE)		
.5 .75 1 1.5 2 2.5 4 6 8 16 20 25 32	20 18 16 14 12 10 8 8 4 4 2 2		

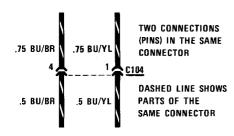
WIRE INSULATION		
ABBREVIATIONS	COLOR	
BK BR RD YLN BU FX PK	BLACK BROWN RED YELLOW GREEN BLUE VIOLET GRAY WHITE PINK	

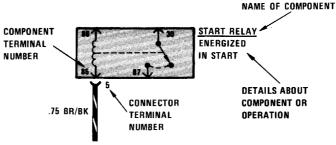


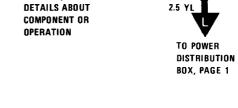


ATTACHED TO COMPONENT

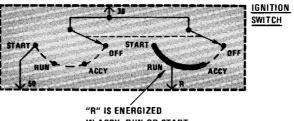
BEAM

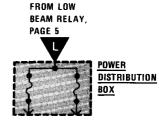

RELAY

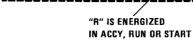

ONE POLE, TWO POSITION SWITCH



SWITCHES THAT **MOVE TOGETHER**

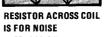

DASHED LINE SHOWS A MECHANICAL CONNECTION BETWEEN SWITCHES

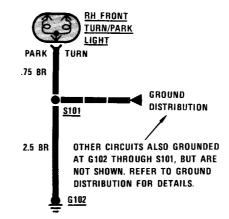



CURRENT PATH IS CONTINUED AS LABELED. THE ARROW SHOWS DIRECTION OF CURRENT FLOW AND IS REPEATED WHERE CURRENT PATH CONTINUES.

TWO POLE, FOUR

POSITION SWITCH




WHEN COIL IS ENERGIZED, SWITCH IS PULLED CLOSED

RELAY SHOWN WITH NO CURRENT **FLOWING THROUGH** COIL

IS FOR NOISE SUPPRESSION

TROUBLESHOOTING PROCEDURE

1. Verify the Problem

Operate the problem circuit to check the accuracy of the complaint. Note the symptoms of the inoperative circuit.

2. Analyze the Problem

Refer to the schematic of the problem circuit in the ETM. Determine how the circuit is supposed to work by tracing the current path(s) from the power feed through the circuit components to ground. Then based on the symptoms you noted in step 1 and your understanding of circuit operation, identify one or more possible causes of the problem.

3. Isolate the Problem

Make circuit tests to prove or disprove the preliminary diagnosis made in step 2. Keep in mind that a logical simple procedure is the key to efficient troubleshooting. Test for the most likely cause of failure first. Try to make tests at points which are easily accessible.

4. Repair the Problem

Once the specific problem is identified, make the repair using the proper tools and safe procedures.

5. Check the Problem

Operate the circuit to check for satisfactory circuit operation. Good repair practice calls for rechecking all circuits you have worked on.

TROUBLESHOOTING TOOLS


Isolating the problem (Step 3 of TROUBLESHOOTING PROCEDURES) requires the use of a voltmeter and/or ohmmeter. A voltmeter measures voltage at selected points in a circuit. An ohmmeter measures a circuit's resistance to current flow. It has an internal battery that provides current to the circuit under test. Disconnect the car battery when using an ohmmeter because the battery voltage will cause the ohmmeter to give false readings. Also, do not use an ohmmeter on solidstate components. The voltage that the ohmmeter applies to the circuit could damage these components.

TROUBLESHOOTING TESTS

Voltage Test

This test measures voltage in a circuit. By taking measurements at several points (terminals or connectors) along the circuit, you can isolate the problem.

To take a voltage measurement, connect the negative lead of the voltmeter to the battery's negative terminal or other known good ground. Then connect the positive lead of the voltmeter to the point you want to test. The voltmeter will measure the voltage present at that point in the circuit.

Voltage Test