Full download: http://manualplace.com/download/1983-bmw-528e-533i-electrical-troubleshooting-manual/

1983
BMW 528e/533i
Electrical
Troubleshooting
Manual

BMW of North America, Inc. Montvale, New Jersey

FOREWORD

In the interests of continuing technical development work we reserve the right to modify designs and equipment.

Printed in USA

© Copyright BMW of North America, Inc. January 1983

Not to be reproduced wholly or in part without written permission of BMW of North America, Inc. PN 89 89 1 000 138

1983 BMW 528e / 533i Electrical Troubleshooting Manual

CONTENTS

	_
Index	2
How To Use This Manual	3
Symbols	4
Wire Size Conversion Chart	5
Systematic Troubleshooting	6
Diagnostic Connector	101
Power Distribution Box	102
Fuse Data	103
Schematic Diagrams	105
Component Charts and	
Figures	201

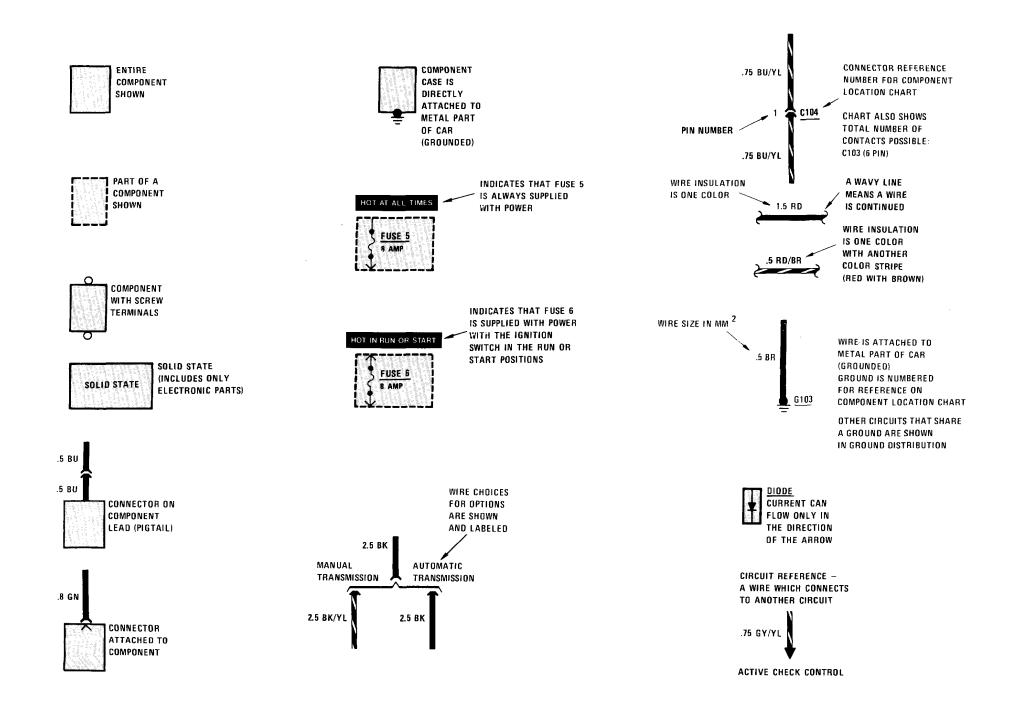
Index—Alphabetical Listing of Electrical Circuits

SCHEMATIC PAGE

SCHEMATIC PAGE

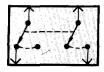
Accessory Connector 151	Lights (continued)
Active Check Control 119	—Front Park 128
Air Conditioning 146	—Glove Box 136
Auto-Charging Flashlight 136	—Hazard Warning 126
Auxiliary Fan	—Headlights 124
Brake Lining Warning 122	—Interior 134
Central Locking	—License 129
Charging System 114	—Rear Marker 129
Cigar Lighter 136	—Stoplights 130
Cruise Control 130	—Tail 128
Diagnostic Connector 104	—Transmission Range 132
Digital Clock 148	—Trunk 129
Evaporative Control 110	—Turn 126
Fuel Control 111	On-Board Computer 148
Fuel Delivery	Power Antenna 144
Fuel Gauge 117	Power Distribution 105
Fuse Data 103	Power Distribution Box 102
Gauges 116	Power Mirrors 139
Ground Distribution 152	Power Windows 140
Heated Door Lock 138	Radio 144
Heater 146	Rear Defogger 138
Horn 137	Seatbelt Warning 123
Idle Speed Contro 112	Service Interval Indicator 115
Ignition 113	Speedometer 116
Ignition Key Warning 123	Start 109
Lights	Sunroof 137
—Backup 135	Warning Indicators 116
—Dash 132	Wiper/Washer 150
—Fog 124	
—Front Marker 128	

The purpose of this manual is to show electrical schematics in a manner that makes electrical troubleshooting easier. Electrical components which work together are shown together on one schematic. The Wiper-Washer schematic, for example, shows all of the electrical components in one diagram. At the top of the page is the fuse (positive) that powers the circuit. The flow of current is shown through all wires, connectors, switches, and motors to ground (negative) at the bottom of the page.

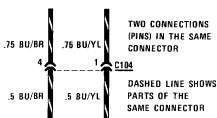

Within the schematic, all switches and sensors are shown "at rest," as though the Ignition Switch were off. For identification, component names are underlined and placed next to or above each component. Notes are included, describing how switches and other components work.

The power distribution schematic shows the current feed through all the connections from the Battery and Alternator to each fuse and the Ignition and Light Switches. If the Power Distribution schematic is combined with any other circuit schematic, a complete picture is made of how that circuit works. The Ground Distribution schematics show how several circuits are connected to common grounds.

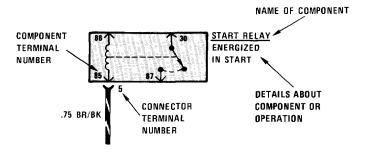
All wiring between components is shown exactly as it exists in the vehicle; however, the wiring is not drawn to scale. To aid in understanding electrical operation, wiring inside complicated components has been simplified. The "Solid State" label designates electronic components.


WIRE SIZE CONVERSION CHART		
METRIC	AWG	
(CROSSECTIONAL AREA	(AMERICAN	
IN MM²)	WIRE GAUGE)	
.5	20	
.75	18	
1	16	
1.5	14	
2	14	
2.5	12	
4	10	
6	8	
8	8	
16	4	
20	4	
25	2	
32	2	

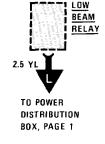
WIRE INSULATION		
ABBREVIATIONS	COLOR	
BK BR RD YL GN BU VI GY VK PK	BLACK BROWN RED YELLOW GREEN BLUE VIOLET GRAY WHITE PINK	

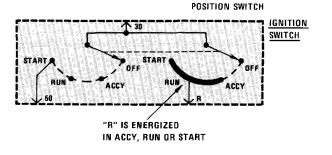


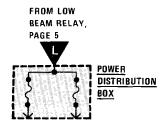
ONE POLE, TWO POSITION SWITCH

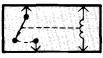


SWITCHES THAT MOVE TOGETHER

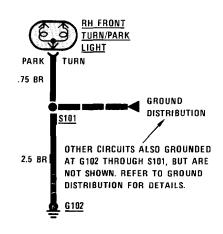

DASHED LINE SHOWS A MECHANICAL CONNECTION BETWEEN SWITCHES






TWO POLE, FOUR

CURRENT PATH
IS CONTINUED
AS LABELED.
THE ARROW SHOWS
DIRECTION OF CURRENT
FLOW AND IS REPEATED
WHERE CURRENT
PATH CONTINUES.



WITH NO CURRENT FLOWING THROUGH COIL

RELAY SHOWN

WHEN COIL IS ENERGIZED, SWITCH IS PULLED CLOSED

Full downbad: http://www.baticom/downbadieshooting-manual/

TROUBLESHOOTING PROCEDURE

1. Verify the Problem

Operate the problem circuit to check the accuracy of the complaint. Note the symptoms of the inoperative circuit.

2. Analyze the Problem

Refer to the schematic of the problem circuit in the ETM. Determine how the circuit is supposed to work by tracing the current path(s) from the power feed through the circuit components to ground. Then based on the symptoms you noted in step 1 and your understanding of circuit operation, identify one or more possible causes of the problem.

3. Isolate the Problem

Make circuit tests to prove or disprove the preliminary diagnosis made in step 2. Keep in mind that a logical simple procedure is the key to efficient troubleshooting. Test for the most likely cause of failure first. Try to make tests at points which are easily accessible.

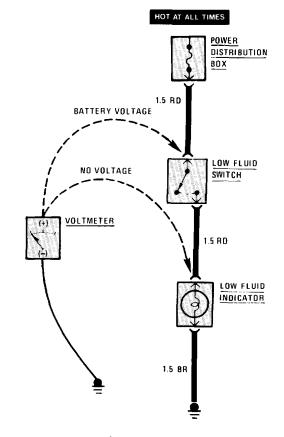
4. Repair the Problem

Once the specific problem is identified, make the repair using the proper tools and safe procedures.

5. Check the Problem

Operate the circuit to check for satisfactory circuit operation. Good repair practice calls for rechecking all circuits you have worked on.

TROUBLESHOOTING TOOLS


Isolating the problem (Step 3 of TROUBLESHOOTING PROCEDURES) requires the use of a voltmeter and/or ohmmeter. A voltmeter measures voltage at selected points in a circuit. An ohmmeter measures a circuit's resistance to current flow. It has an internal battery that provides current to the circuit under test. Disconnect the car battery when using an ohmmeter because the battery voltage will cause the ohmmeter to give false readings. Also, do not use an ohmmeter on solid-state components. The voltage that the ohmmeter applies to the circuit could damage these components.

TROUBLESHOOTING TESTS

Voltage Test

This test measures voltage in a circuit. By taking measurements at several points (terminals or connectors) along the circuit, you can isolate the problem.

To take a voltage measurement, connect the negative lead of the voltmeter to the battery's negative terminal or other known good ground. Then connect the positive lead of the voltmeter to the point you want to test. The voltmeter will measure the voltage present at that point in the circuit.

Voltage Test